Sparse Signal Estimation by Maximally Sparse Convex Optimization

被引:141
|
作者
Selesnick, Ivan W. [1 ]
Bayram, Ilker [2 ]
机构
[1] NYU Polytech Sch Engn, Dept Elect & Comp Engn, Brooklyn, NY 11201 USA
[2] Istanbul Tech Univ, Dept Elect & Commun Engn, TR-34469 Istanbul, Turkey
基金
美国国家科学基金会;
关键词
Convex optimization; sparse optimization; sparse regularization; basis pursuit; lasso; deconvolution; L1; norm; threshold function; non-convex optimization; NONCONCAVE PENALIZED LIKELIHOOD; MINIMIZATION METHODS; RECONSTRUCTION; SHRINKAGE; SELECTION; DECONVOLUTION; DECOMPOSITION; ALGORITHMS; RECOVERY;
D O I
10.1109/TSP.2014.2298839
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper addresses the problem of sparsity penalized least squares for applications in sparse signal processing, e. g., sparse deconvolution. This paper aims to induce sparsity more strongly than L1 norm regularization, while avoiding non-convex optimization. For this purpose, this paper describes the design and use of non-convex penalty functions (regularizers) constrained so as to ensure the convexity of the total cost function to be minimized. The method is based on parametric penalty functions, the parameters of which are constrained to ensure convexity of F. It is shown that optimal parameters can be obtained by semidefinite programming (SDP). This maximally sparse convex (MSC) approach yields maximally non-convex sparsity-inducing penalty functions constrained such that the total cost function is convex. It is demonstrated that iterative MSC (IMSC) can yield solutions substantially more sparse than the standard convex sparsity-inducing approach, i.e., L1 norm minimization.
引用
收藏
页码:1078 / 1092
页数:15
相关论文
共 50 条
  • [31] Generalized sparse covariance-based estimation
    Sward, Johan
    Adalbjornsson, Stefan I.
    Jakobsson, Andreas
    SIGNAL PROCESSING, 2018, 143 : 311 - 319
  • [32] Synthesis of Sparse Antenna Arrays Subject to Constraint on Directivity via Iterative Convex Optimization
    Yang, Feng
    Yang, Shiwen
    Chen, Yikai
    Qu, Shiwei
    Hu, Jun
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2021, 20 (08): : 1498 - 1502
  • [33] Cyclic sparse deconvolution through convex relaxation
    Sabri, Khalid
    Choklati, Abdelouahad
    2014 5TH WORKSHOP ON CODES, CRYPTOGRAPHY AND COMMUNICATION SYSTEMS (WCCCS' 14), 2014, : 128 - 135
  • [34] SPARSE OPTIMIZATION WITH LEAST-SQUARES CONSTRAINTS
    van den Berg, Ewout
    Friedlander, Michael P.
    SIAM JOURNAL ON OPTIMIZATION, 2011, 21 (04) : 1201 - 1229
  • [35] Projected Gradient Descent for Non-Convex Sparse Spike Estimation
    Traonmilin, Yann
    Aujol, Jean-Francois
    Leclaire, Arthur
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1110 - 1114
  • [36] Sparse Spatial Spectral Fitting with Nonuniform Noise Covariance Matrix Estimation Based on Semidefinite Optimization
    Guo, Tuo
    Bi, Yang
    Feng, Xian
    Yan, Luoheng
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [37] Sparse signal representation and its applications in ultrasonic NDE
    Zhang, Guang-Ming
    Zhang, Cheng-Zhong
    Harvey, David M.
    ULTRASONICS, 2012, 52 (03) : 351 - 363
  • [38] Efficient general sparse denoising with non-convex sparse constraint and total variation regularization
    Deng, Shi-Wen
    Han, Ji-Qing
    DIGITAL SIGNAL PROCESSING, 2018, 78 : 259 - 264
  • [39] Parallel and Distributed Sparse Optimization
    Peng, Zhimin
    Yan, Ming
    Yin, Wotao
    2013 ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2013, : 659 - 664
  • [40] Non-convex Statistical Optimization for Sparse Tensor Graphical Model
    Sun, Wei
    Wang, Zhaoran
    Liu, Han
    Cheng, Guang
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28