Sparse Signal Estimation by Maximally Sparse Convex Optimization

被引:142
|
作者
Selesnick, Ivan W. [1 ]
Bayram, Ilker [2 ]
机构
[1] NYU Polytech Sch Engn, Dept Elect & Comp Engn, Brooklyn, NY 11201 USA
[2] Istanbul Tech Univ, Dept Elect & Commun Engn, TR-34469 Istanbul, Turkey
基金
美国国家科学基金会;
关键词
Convex optimization; sparse optimization; sparse regularization; basis pursuit; lasso; deconvolution; L1; norm; threshold function; non-convex optimization; NONCONCAVE PENALIZED LIKELIHOOD; MINIMIZATION METHODS; RECONSTRUCTION; SHRINKAGE; SELECTION; DECONVOLUTION; DECOMPOSITION; ALGORITHMS; RECOVERY;
D O I
10.1109/TSP.2014.2298839
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper addresses the problem of sparsity penalized least squares for applications in sparse signal processing, e. g., sparse deconvolution. This paper aims to induce sparsity more strongly than L1 norm regularization, while avoiding non-convex optimization. For this purpose, this paper describes the design and use of non-convex penalty functions (regularizers) constrained so as to ensure the convexity of the total cost function to be minimized. The method is based on parametric penalty functions, the parameters of which are constrained to ensure convexity of F. It is shown that optimal parameters can be obtained by semidefinite programming (SDP). This maximally sparse convex (MSC) approach yields maximally non-convex sparsity-inducing penalty functions constrained such that the total cost function is convex. It is demonstrated that iterative MSC (IMSC) can yield solutions substantially more sparse than the standard convex sparsity-inducing approach, i.e., L1 norm minimization.
引用
收藏
页码:1078 / 1092
页数:15
相关论文
共 50 条
  • [1] Group-Sparse Signal Denoising: Non-Convex Regularization, Convex Optimization
    Chen, Po-Yu
    Selesnick, Ivan W.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (13) : 3464 - 3478
  • [2] Convex Optimization Algorithms for Sparse Signal Reconstruction
    Jovanovic, Filip
    Miladinovic, Dragana
    Radunovic, Natasa
    2020 9TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 2020, : 372 - 375
  • [3] On the Limitation of Convex Optimization for Sparse Signal Segmentation
    Rajmic, Pavel
    Novosadova, Michaela
    2016 39TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2016, : 550 - 554
  • [4] Fast Sparse Recovery via Non-Convex Optimization
    Chen, Laming
    Gu, Yuantao
    2015 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2015, : 1275 - 1279
  • [5] Successive Convex Approximation Algorithms for Sparse Signal Estimation With Nonconvex Regularizations
    Yang, Yang
    Pesavento, Marius
    Chatzinotas, Symeon
    Ottersten, Bjorn
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2018, 12 (06) : 1286 - 1302
  • [6] Centralized and Distributed Online Learning for Sparse Time-Varying Optimization
    Fosson, Sophie M.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (06) : 2542 - 2557
  • [7] A smoothing method for sparse optimization over convex sets
    Haddou, M.
    Migot, T.
    OPTIMIZATION LETTERS, 2020, 14 (05) : 1053 - 1069
  • [8] Sparse Reinforcement Learning via Convex Optimization
    Qin, Zhiwei
    Li, Weichang
    Janoos, Firdaus
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 424 - 432
  • [9] DEMIXING SPARSE SIGNALS VIA CONVEX OPTIMIZATION
    Zhou, Yi
    Liang, Yingbin
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 4202 - 4206
  • [10] Sparse Convex Optimization via Adaptively Regularized Hard Thresholding
    Axiotis, Kyriakos
    Sviridenko, Maxim
    JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22 : 1 - 47