Phase transformations of nano-sized cubic boron nitride to white graphene and white graphite

被引:22
作者
Dang, Hongli [1 ]
Liu, Yingdi [1 ]
Xue, Wenhua [1 ]
Anderson, Ryan S. [1 ]
Sewell, Cody R. [1 ]
Xue, Sha [2 ,3 ]
Crunkleton, Daniel W. [2 ,3 ]
Shen, Yaogen [4 ]
Wang, Sanwu [1 ,3 ]
机构
[1] Univ Tulsa, Dept Phys & Engn Phys, Tulsa, OK 74104 USA
[2] Univ Tulsa, Dept Chem Engn, Tulsa, OK 74104 USA
[3] Univ Tulsa, Inst Alternate Energy, Tulsa, OK 74104 USA
[4] City Univ Hong Kong, Dept Mech & Biomed Engn, Kowloon, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
GENERALIZED GRADIENT APPROXIMATION; AUGMENTED-WAVE METHOD; MINIMUM ENERGY PATHS; ELASTIC BAND METHOD; AB-INITIO; ULTRASOFT PSEUDOPOTENTIALS; SADDLE-POINTS; PRESSURE; BN; TRANSITION;
D O I
10.1063/1.4867256
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report quantum-mechanical investigations that predict the formation of white graphene and nano-sized white graphite from the first-order phase transformations of nano-sized boron nitride thin-films. The phase transformations from the nano-sized diamond-like structure, when the thickness d> 1.4 nm, to the energetically more stable nano-sized white graphite involve low activation energies of less than 1.0 eV. On the other hand, the diamond-like structure transforms spontaneously to white graphite when d <= 1.4 nm. In particular, the two-dimensional structure with single-layer boron nitride, the so-called white graphene, could be formed as a result of such transformation. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 41 条
[1]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[2]   DIRECT TRANSFORMATION OF HEXAGONAL BORON NITRIDE TO DENSER FORMS [J].
BUNDY, FP ;
WENTORF, RH .
JOURNAL OF CHEMICAL PHYSICS, 1963, 38 (05) :1144-&
[3]   UNIFIED APPROACH FOR MOLECULAR-DYNAMICS AND DENSITY-FUNCTIONAL THEORY [J].
CAR, R ;
PARRINELLO, M .
PHYSICAL REVIEW LETTERS, 1985, 55 (22) :2471-2474
[4]   BORON-NITRIDE NANOTUBES [J].
CHOPRA, NG ;
LUYKEN, RJ ;
CHERREY, K ;
CRESPI, VH ;
COHEN, ML ;
LOUIE, SG ;
ZETTL, A .
SCIENCE, 1995, 269 (5226) :966-967
[5]   Boron nitride nanomesh [J].
Corso, M ;
Auwärter, W ;
Muntwiler, M ;
Tamai, A ;
Greber, T ;
Osterwalder, J .
SCIENCE, 2004, 303 (5655) :217-220
[6]   Disordered state in first-order phase transitions: Hexagonal-to-cubic and cubic-to-hexagonal transitions in boron nitride [J].
Eremets, MI ;
Takemura, K ;
Yusa, H ;
Golberg, D ;
Bando, Y ;
Blank, VD ;
Sato, Y ;
Watanabe, K .
PHYSICAL REVIEW B, 1998, 57 (10) :5655-5660
[7]   Electron correlation decides the stability of cubic versus hexagonal boron nitride [J].
Halo, Migen ;
Pisani, Cesare ;
Maschio, Lorenzo ;
Casassa, Silvia ;
Schuetz, Martin ;
Usvyat, Denis .
PHYSICAL REVIEW B, 2011, 83 (03)
[8]   Transverse pressure induced phase transitions in boron nitride nanotube bundles and the lightest boron nitride crystal [J].
Hao, Shaogang ;
Zhou, Gang ;
Duan, Wenhui ;
Wu, Jian ;
Gu, Bing-Lin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (15) :5257-5261
[9]   Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points [J].
Henkelman, G ;
Jónsson, H .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (22) :9978-9985
[10]   A climbing image nudged elastic band method for finding saddle points and minimum energy paths [J].
Henkelman, G ;
Uberuaga, BP ;
Jónsson, H .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (22) :9901-9904