NONLOCAL-INTERACTION EQUATIONS ON UNIFORMLY PROX-REGULAR SETS

被引:17
作者
Carrillo, Jose A. [1 ]
Slepcev, Dejan [2 ]
Wu, Lijiang [2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Well-posedness of measure solutions; gradient flows; optimal transport; nonlocal interactions; particle approximation; MODEL;
D O I
10.3934/dcds.2016.36.1209
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the well-posedness of a class of nonlocal-interaction equations on general domains Omega subset of R-d, including nonconvex ones. We show that under mild assumptions on the regularity of domains (uniform prox-regularity), for lambda-geodesically convex interaction and external potentials, the nonlocal-interaction equations have unique weak measure solutions. Moreover, we show quantitative estimates on the stability of solutions which quantify the interplay of the geometry of the domain and the convexity of the energy. We use these results to investigate on which domains and for which potentials the solutions aggregate to a single point as time goes to infinity. Our approach is based on the theory of gradient flows in spaces of probability measures.
引用
收藏
页码:1209 / 1247
页数:39
相关论文
共 23 条
[1]   Quasi-static evolution and congested crowd transport [J].
Alexander, Damon ;
Kim, Inwon ;
Yao, Yao .
NONLINEARITY, 2014, 27 (04) :823-858
[2]  
[Anonymous], 2009, GRUNDLEHREN MATH WIS
[3]  
[Anonymous], 2007, SPRINGER MONOGRAPHS
[4]  
[Anonymous], 1970, CONVEX ANAL
[5]  
[Anonymous], 2008, Metric Spaces and in the Space of Probability Measures
[6]   A Primer of Swarm Equilibria [J].
Bernoff, Andrew J. ;
Topaz, Chad M. .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2011, 10 (01) :212-250
[7]  
Bounkhel M., 2012, SPRINGER OPTIMIZATIO, V59
[8]   Gradient flows for non-smooth interaction potentials [J].
Carrillo, J. A. ;
Lisini, S. ;
Mainini, E. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 100 :122-147
[9]   GLOBAL-IN-TIME WEAK MEASURE SOLUTIONS AND FINITE-TIME AGGREGATION FOR NONLOCAL INTERACTION EQUATIONS [J].
Carrillo, J. A. ;
Difrancesco, M. ;
Figalli, A. ;
Laurent, T. ;
Slepcev, D. .
DUKE MATHEMATICAL JOURNAL, 2011, 156 (02) :229-271
[10]  
Clarke FH., 1995, J CONVEX ANAL, V2, P117