A variational finite volume scheme for Wasserstein gradient flows

被引:18
|
作者
Cances, Clement [1 ]
Gallouet, Thomas O. [2 ]
Todeschi, Gabriele [2 ]
机构
[1] Univ Lille, INRIA, CNRS, UMR 8524,Lab Paul Painleve, F-59000 Lille, France
[2] Univ Paris Dauphine, PSL Res Univ, CEREMADE, CNRS,INRIA,Project Team Mokaplan,UMR 7534, Ceremade, France
基金
欧盟地平线“2020”;
关键词
49M29; 35K65; 65M08; 65M12; PARABOLIC EQUATIONS; NUMERICAL-ANALYSIS; LAGRANGIAN SCHEME; POROUS-MEDIA; CROWD MOTION; DIFFUSION; CONVERGENCE; MODEL; DISCRETIZATION; DISTANCE;
D O I
10.1007/s00211-020-01153-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a variational finite volume scheme to approximate the solutions to Wasserstein gradient flows. The time discretization is based on an implicit linearization of the Wasserstein distance expressed thanks to Benamou-Brenier formula, whereas space discretization relies on upstream mobility two-point flux approximation finite volumes. The scheme is based on a first discretize then optimize approach in order to preserve the variational structure of the continuous model at the discrete level. It can be applied to a wide range of energies, guarantees non-negativity of the discrete solutions as well as decay of the energy. We show that the scheme admits a unique solution whatever the convex energy involved in the continuous problem, and we prove its convergence in the case of the linear Fokker-Planck equation with positive initial density. Numerical illustrations show that it is first order accurate in both time and space, and robust with respect to both the energy and the initial profile.
引用
收藏
页码:437 / 480
页数:44
相关论文
共 50 条
  • [1] FROM GEODESIC EXTRAPOLATION TO A VARIATIONAL BDF2 SCHEME FOR WASSERSTEIN GRADIENT FLOWS
    Gallouet, Thomas o.
    Natale, Andrea
    Todeschi, Gabriele
    MATHEMATICS OF COMPUTATION, 2024, 93 (350) : 2769 - 2810
  • [2] Entropic Approximation of Wasserstein Gradient Flows
    Peyre, Gabriel
    SIAM JOURNAL ON IMAGING SCIENCES, 2015, 8 (04): : 2323 - 2351
  • [3] ON GRADIENT STRUCTURES FOR MARKOV CHAINS AND THE PASSAGE TO WASSERSTEIN GRADIENT FLOWS
    Disser, Karoline
    Liero, Matthias
    NETWORKS AND HETEROGENEOUS MEDIA, 2015, 10 (02) : 233 - 253
  • [4] A VARIATIONAL FORMULATION OF THE BDF2 METHOD FOR METRIC GRADIENT FLOWS
    Matthes, Daniel
    Plazotta, Simon
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (01): : 145 - 172
  • [5] A new flow dynamic approach for Wasserstein gradient flows
    Cheng, Qing
    Liu, Qianqian
    Chen, Wenbin
    Shen, Jie
    JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 524
  • [6] Fisher information regularization schemes for Wasserstein gradient flows
    Li, Wuchen
    Lu, Jianfeng
    Wang, Li
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 416
  • [7] Primal Dual Methods for Wasserstein Gradient Flows
    Carrillo, Jose A.
    Craig, Katy
    Wang, Li
    Wei, Chaozhen
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2022, 22 (02) : 389 - 443
  • [8] Improved L2 estimate for gradient schemes and super-convergence of the TPFA finite volume scheme
    Droniou, Jerome
    Nataraj, Neela
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (03) : 1254 - 1293
  • [9] A CONVERGENT ENTROPY DIMINISHING FINITE VOLUME SCHEME FOR A CROSS-DIFFUSION SYSTEM
    Cances, Clement
    Gaudeul, Benoit
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (05) : 2684 - 2710
  • [10] A FINITE VOLUME SCHEME FOR NONLINEAR DEGENERATE PARABOLIC EQUATIONS
    Bessemoulin-Chatard, Marianne
    Filbet, Francis
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (05) : B559 - B583