Operators which have a closed quasi-nilpotent part

被引:55
作者
Aiena, P
Colasante, ML
González, M
机构
[1] Univ Palermo, Fac Ingn, Dipartimento Matemat & Applicaz, I-90128 Palermo, Italy
[2] Univ Los Andes, Fac Ciencias, Dept Matemat, Merida 5101, Venezuela
[3] Univ Cantabria, Fac Ciencias, Dept Matemat, E-39005 Santander, Spain
关键词
quasi-nilpotent part; single valued extension property; operators with a generalized Kato decomposition;
D O I
10.1090/S0002-9939-02-06386-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We find several conditions for the quasi-nilpotent part of a bounded operator acting on a Banach space to be closed. Most of these conditions are established for semi-Fredholm operators or, more generally, for operators which admit a generalized Kato decomposition. For these operators the property of having a closed quasi-nilpotent part is related to the so-called single valued extension property.
引用
收藏
页码:2701 / 2710
页数:10
相关论文
共 21 条
  • [1] Operators which do not have the single valued extension property
    Aiena, P
    Monsalve, O
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 250 (02) : 435 - 448
  • [2] AIENA P, 2001, ACTA SCI MATH SZEGED, V67, P461
  • [3] Bonsall F. F., 1973, Ergeb. Math. Grenzgeb., V80
  • [4] COLOJOARA I., 1968, THEORY GEN SPECTRAL
  • [5] Dunford N., 1971, PURE APPL MATH, VVII
  • [6] Dunford N., 1952, Pac. J. Math, V2, P559, DOI [10.2140/pjm.1952.2.559, DOI 10.2140/PJM.1952.2.559]
  • [7] Dunford N., 1954, PAC J MATH, V4, P321, DOI DOI 10.2140/PJM.1954.4.321
  • [8] SINGLE VALUED EXTENSION PROPERTY ON A BANACH-SPACE
    FINCH, JK
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1975, 58 (01) : 61 - 69
  • [9] Heuser H., 1982, Functional Analysis
  • [10] Kato T., 1958, J ANAL MATH, V6, P261