Fractional bilinear stochastic equations with the drift in the first fractional chaos

被引:5
|
作者
Tudor, C
机构
[1] Univ Bucharest, Dept Math & Informat, Bucharest 010014, Romania
[2] CIMAT, Bucharest 010014, Romania
关键词
fractional Brownian motion; bilinear stochastic equations; multiple fractional integrals;
D O I
10.1081/SAP-200026448
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper we compute the explicit form of the fractional chaos decomposition of the solution of a fractional stochastic bilinear equation with the drift in the fractional chaos of order one and initial condition in a finite fractional chaos. The large deviations principle is also obtained for the one-dimensional distributions of the solution of the equation perturbed by a small noise.
引用
收藏
页码:1209 / 1233
页数:25
相关论文
共 50 条
  • [21] Semilinear fractional stochastic differential equations
    León, JA
    Tudor, C
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2002, 8 (02): : 205 - 226
  • [22] ON A CLASS OF STOCHASTIC FRACTIONAL HEAT EQUATIONS
    Song, Jian
    Wang, Meng
    Yuan, Wangjun
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 153 (01) : 341 - 356
  • [23] Volterra equations with fractional stochastic integrals
    El-Borai, MM
    El-Nadi, KE
    Mostafa, OL
    Ahmed, HM
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2004, (05) : 453 - 468
  • [24] Controllability of fractional stochastic delay equations
    Ahmed H.M.
    Lobachevskii Journal of Mathematics, 2009, 30 (3) : 195 - 202
  • [25] Stochastic solutions for fractional wave equations
    Mark M. Meerschaert
    René L. Schilling
    Alla Sikorskii
    Nonlinear Dynamics, 2015, 80 : 1685 - 1695
  • [26] DYNAMICS OF STOCHASTIC FRACTIONAL BOUSSINESQ EQUATIONS
    Huang, Jianhua
    Shen, Tianlong
    Li, Yuhong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (07): : 2051 - 2067
  • [27] Solutions to stochastic fractional relaxation equations
    Karczewska, A.
    Lizama, C.
    PHYSICA SCRIPTA, 2009, T136
  • [28] Stochastic solutions for fractional wave equations
    Meerschaert, Mark M.
    Schilling, Rene L.
    Sikorskii, Alla
    NONLINEAR DYNAMICS, 2015, 80 (04) : 1685 - 1695
  • [29] Solutions to stochastic fractional oscillation equations
    Karczewska, Anna
    Lizama, Carlos
    APPLIED MATHEMATICS LETTERS, 2010, 23 (11) : 1361 - 1366
  • [30] Impulsive stochastic fractional differential equations driven by fractional Brownian motion
    Abouagwa, Mahmoud
    Cheng, Feifei
    Li, Ji
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)