Capacitive MEMS accelerometer wide range modeling using artificial neural network

被引:0
作者
Baharodimehr, A. [2 ]
Suratgar, A. Abolfazl [1 ]
Sadeghi, H. [3 ]
机构
[1] Tehran Polytech Univ, Dept Elect Engn, Tehran, Iran
[2] Arak Univ, Dept Elect Engn, Arak, Iran
[3] Arak Univ, Dept Phys, Arak, Iran
关键词
Accelerometer; MEMS; cubic stiffness; neural network;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a nonlinear model for a capacitive microelectromechanical accelerometer (MEMA). System parameters of the accelerometer are developed using the effect of cubic term of the folded-flexure spring. To solve this equation, we use the FEA method. The neural network (NN) uses the Levenberg-Marquardt (LM) method for training the system to have a more accurate response. The designed NN can identify and predict the displacement of the movable mass of accelerometer. The simulation results are very promising.
引用
收藏
页码:185 / 192
页数:8
相关论文
共 50 条
  • [31] Accuracy Improvement of Accelerometer-Based Location Estimation Using Neural Network
    Shigei, Noritaka
    Urakawa, Hiroki
    Nakamura, Yoshihiro
    Teramura, Masahiro
    Miyajima, Hiromi
    BIG DATA ANALYSIS AND DEEP LEARNING APPLICATIONS, 2019, 744 : 79 - 85
  • [32] Modeling indoor air carbon dioxide concentration using artificial neural network
    B. Khazaei
    A. Shiehbeigi
    A. R. Haji Molla Ali Kani
    International Journal of Environmental Science and Technology, 2019, 16 : 729 - 736
  • [33] Modeling indoor air carbon dioxide concentration using artificial neural network
    Khazaei, B.
    Shiehbeigi, A.
    Kani, A. R. Haji Molla Ali
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2019, 16 (02) : 729 - 736
  • [34] Design of a Square MEMS Piezoelectric Accelerometer With a Wide Range of Applicability, a Low Transverse Sensitivity Ratio, and High Accuracy
    Li, Cheng-Ying
    Chen, Yueh-Han
    Wei, Zhi-Yuan
    Ho, Yi-Chen
    Chu, Sheng-Yuan
    Tsai, Cheng-Che
    Hong, Cheng-Shong
    IEEE SENSORS JOURNAL, 2022, 22 (10) : 9306 - 9312
  • [35] Modeling of epilepsy based on chaotic artificial neural network
    Panahi, Shirin
    Aram, Zainab
    Jafari, Sajad
    Ma, Jun
    Sprott, J. C.
    CHAOS SOLITONS & FRACTALS, 2017, 105 : 150 - 156
  • [36] Artificial Neural Network Based Modeling of Glucose Metabolism
    Xiong, Wangping
    Du, Jianqiang
    Shu, Qinglong
    Zhao, Yi
    ADVANCES IN COMPUTER SCIENCE, INTELLIGENT SYSTEM AND ENVIRONMENT, VOL 2, 2011, 105 : 623 - +
  • [37] Reliable and Practical Fall Prediction Using Artificial Neural Network
    Engel, William
    Ding, Wei
    2017 13TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2017,
  • [38] Modeling, simulation and experimental testing of the MEMS thermoelectric generators in wide range of operational conditions
    Ancik, Z.
    Vlach, R.
    Janak, L.
    Kopecek, P.
    Hadas, Z.
    SMART SENSORS, ACTUATORS, AND MEMS VI, 2013, 8763
  • [39] Accurate Leakage Inductance Modeling Using an Artificial Neural Network Based on the Dowell Model
    Wu, Yu Hsin
    Shigematsu, Koichi
    Omoto, Yasumichi
    Ikushima, Yoshihiro
    Imaoka, Jun
    Yamamoto, Masayoshi
    IEEJ JOURNAL OF INDUSTRY APPLICATIONS, 2023, 12 (03) : 334 - 344
  • [40] MODELING OF TRIANGULAR UNIT HYDROGRAPHS USING AN ARTIFICIAL NEURAL NETWORK IN A TROPICAL RIVER BASIN
    Saefulloh, Dony Faturochman
    Hadihardaja, Iwan K.
    Harlan, Dhemi
    INTERNATIONAL JOURNAL OF GEOMATE, 2018, 15 (51): : 69 - 76