Capacitive MEMS accelerometer wide range modeling using artificial neural network

被引:0
|
作者
Baharodimehr, A. [2 ]
Suratgar, A. Abolfazl [1 ]
Sadeghi, H. [3 ]
机构
[1] Tehran Polytech Univ, Dept Elect Engn, Tehran, Iran
[2] Arak Univ, Dept Elect Engn, Arak, Iran
[3] Arak Univ, Dept Phys, Arak, Iran
关键词
Accelerometer; MEMS; cubic stiffness; neural network;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a nonlinear model for a capacitive microelectromechanical accelerometer (MEMA). System parameters of the accelerometer are developed using the effect of cubic term of the folded-flexure spring. To solve this equation, we use the FEA method. The neural network (NN) uses the Levenberg-Marquardt (LM) method for training the system to have a more accurate response. The designed NN can identify and predict the displacement of the movable mass of accelerometer. The simulation results are very promising.
引用
收藏
页码:185 / 192
页数:8
相关论文
共 50 条
  • [1] Electrical equivalent modeling of MEMS differential capacitive accelerometer
    Mukhiya, R.
    Garg, M.
    Gaikwad, P.
    Sinha, S.
    Singh, A. K.
    Gopal, R.
    MICROELECTRONICS JOURNAL, 2020, 99
  • [2] TEMPERATURE COMPENSATION OF A CAPACITIVE MEMS ACCELEROMETER BY USING A MEMS OSCILLATOR
    Kose, Talha
    Azgin, Kivanc
    Akin, Tayfun
    2016 3RD IEEE INTERNATIONAL SYMPOSIUM ON INERTIAL SENSORS AND SYSTEMS, 2016, : 33 - 36
  • [3] Artificial neural network modeling of RIF MEMS resonators
    Lee, YJ
    Park, YW
    Niu, F
    Bachman, B
    Gupta, KC
    Filipovic, D
    INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, 2004, 14 (04) : 302 - 316
  • [4] Modeling and test result of closed-loop MEMS accelerometer with wide dynamic range
    Feng Zhang
    Xiangliang Jin
    Longsheng Wang
    Microsystem Technologies, 2016, 22 : 653 - 657
  • [5] Modeling and test result of closed-loop MEMS accelerometer with wide dynamic range
    Zhang, Feng
    Jin, Xiangliang
    Wang, Longsheng
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2016, 22 (03): : 653 - 657
  • [6] Artificial Neural Network based Design of RF MEMS Capacitive Shunt Switches
    Marinkovic, Zlatica
    Kim, Taeyoung
    Markovic, Vera
    Milijic, Marija
    Pronic-Rancic, Olivera
    Ciric, Tomislav
    Vietzorreck, Larissa
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2016, 31 (07): : 756 - 764
  • [7] Modeling and non-linear responses of MEMS capacitive accelerometer
    Harsha, C. Sri
    Prasanth, C. S. R.
    Pratiher, Barun
    CSNDD 2014 - INTERNATIONAL CONFERENCE ON STRUCTURAL NONLINEAR DYNAMICS AND DIAGNOSIS, 2014, 16
  • [8] HIGH DYNAMIC RANGE CMOS-MEMS CAPACITIVE ACCELEROMETER ARRAY
    Guney, Metin G.
    Li, Xiaoliang
    Chung, Pey J.
    Paramesh, Jeyanandh
    Mukherjee, Tamal
    Fedder, Gary K.
    2018 IEEE MICRO ELECTRO MECHANICAL SYSTEMS (MEMS), 2018, : 992 - 995
  • [9] Artificial Neural Network Modeling of MEMS Cantilever Resonator Using Levenberg Marquardt Algorithm
    Sutagundar, Manjula
    Nirosha, H.
    Sheeparamatti, B. G.
    PROCEEDINGS OF THE 2016 2ND INTERNATIONAL CONFERENCE ON APPLIED AND THEORETICAL COMPUTING AND COMMUNICATION TECHNOLOGY (ICATCCT), 2016, : 808 - 811
  • [10] Design and modeling of curved beam based differential capacitive MEMS accelerometer
    Jujjuvarapu, Sai Kishore
    Pandey, Ashok Kumar
    2024 IEEE APPLIED SENSING CONFERENCE, APSCON, 2024,