Conjugacy of Cartan subalgebras of complex finite-dimensional Leibniz algebras

被引:42
|
作者
Omirov, B. A. [1 ]
机构
[1] Uzbek Acad Sci, Inst Math, Tashkent 700143, Uzbekistan
关键词
Cartan subalgebra; regular element; Lie algebra; Leibniz algebra;
D O I
10.1016/j.jalgebra.2006.01.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present work the properties of Cartan subalgebras and their connection with regular elements in finite-dimensional Lie algebras are extended to the case of Leibniz algebras. It is shown that Cartan subalgebras and regular elements of a Leibniz algebra correspond to Cartan subalgebras and regular elements of a Lie algebra by a natural homomorphism. Conjugacy of Cartan subalgebras of Leibniz algebras is shown. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:887 / 896
页数:10
相关论文
共 50 条
  • [21] Polynomial Realizations of Finite-Dimensional Lie Algebras
    V. V. Gorbatsevich
    Functional Analysis and Its Applications, 2020, 54 : 93 - 99
  • [22] Finite-dimensional Leibniz algebra representations of sl2
    Kurbanbaev, Tuuelbay
    Turdibaev, Rustam
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (03): : 845 - 854
  • [23] Cartan subalgebras of root-reductive Lie algebras
    Dan-Cohen, Elizabeth
    Penkov, Ivan
    Snyder, Noah
    JOURNAL OF ALGEBRA, 2007, 308 (02) : 583 - 611
  • [24] Weyl groups are finite - And other finiteness properties of Cartan subalgebras
    Hofmann, KH
    Lawson, JD
    Ruppert, WAF
    MATHEMATISCHE NACHRICHTEN, 1996, 179 : 119 - 143
  • [25] On the structure of Leibniz algebras whose subalgebras are ideals or core-free
    Chupordia, V. A.
    Kurdachenko, L. A.
    Semko, N. N.
    ALGEBRA AND DISCRETE MATHEMATICS, 2020, 29 (02): : 180 - 194
  • [26] On the maximal finite-dimensional lie algebras with given nilradical
    Gorbatsevich V.V.
    Russian Mathematics, 2015, 59 (2) : 29 - 35
  • [27] On Some Classes of Bases in Finite-Dimensional Lie Algebras
    Gorbatsevich, V. V.
    MATHEMATICAL NOTES, 2023, 114 (1-2) : 165 - 171
  • [28] On Some Classes of Bases in Finite-Dimensional Lie Algebras
    V. V. Gorbatsevich
    Mathematical Notes, 2023, 114 : 165 - 171
  • [29] Cartan Subalgebras in C*-Algebras of Haus dorff ,tale Groupoids
    Brown, Jonathan H.
    Nagy, Gabriel
    Reznikoff, Sarah
    Sims, Aidan
    Williams, Dana P.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2016, 85 (01) : 109 - 126
  • [30] Cartan Subalgebras in C*-Algebras of Haus dorff étale Groupoids
    Jonathan H. Brown
    Gabriel Nagy
    Sarah Reznikoff
    Aidan Sims
    Dana P. Williams
    Integral Equations and Operator Theory, 2016, 85 : 109 - 126