Conjugacy of Cartan subalgebras of complex finite-dimensional Leibniz algebras

被引:42
|
作者
Omirov, B. A. [1 ]
机构
[1] Uzbek Acad Sci, Inst Math, Tashkent 700143, Uzbekistan
关键词
Cartan subalgebra; regular element; Lie algebra; Leibniz algebra;
D O I
10.1016/j.jalgebra.2006.01.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present work the properties of Cartan subalgebras and their connection with regular elements in finite-dimensional Lie algebras are extended to the case of Leibniz algebras. It is shown that Cartan subalgebras and regular elements of a Leibniz algebra correspond to Cartan subalgebras and regular elements of a Lie algebra by a natural homomorphism. Conjugacy of Cartan subalgebras of Leibniz algebras is shown. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:887 / 896
页数:10
相关论文
共 50 条
  • [1] CARTAN SUBALGEBRAS OF LEIBNIZ n-ALGEBRAS
    Albeverio, S.
    Ayupov, Sh. A.
    Omirov, B. A.
    Turdibaev, R. M.
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (06) : 2080 - 2096
  • [2] On degenerations of finite-dimensional nilpotent complex Leibniz algebras
    Rakhimov I.S.
    Journal of Mathematical Sciences, 2006, 136 (3) : 3980 - 3983
  • [3] Finite-dimensional Leibniz algebras and combinatorial structures
    Ceballos, M.
    Nunez, J.
    Tenorio, A. F.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2018, 20 (01)
  • [4] On conjugacy of Cartan subalgebras in extended affine Lie algebras
    Chernousov, V.
    Neher, E.
    Pianzola, A.
    Yahorau, U.
    ADVANCES IN MATHEMATICS, 2016, 290 : 260 - 292
  • [5] Some radicals, Frattini and Cartan subalgebras of Leibniz n-algebras
    Gago, F.
    Ladra, M.
    Omirov, B. A.
    Turdibaev, R. M.
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (11) : 1510 - 1527
  • [6] Computing Cartan subalgebras of Lie algebras
    DeGraaf, W
    Ivanyos, G
    Ronyai, L
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1996, 7 (05) : 339 - 349
  • [7] On Leibniz algebras with maximal cyclic subalgebras
    Chupordia, Vasiliy A.
    Kurdachenko, Leonid A.
    Subbotin, Igor Ya
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2022, 63 (03): : 277 - 294
  • [8] The Leibniz algebras whose subalgebras are ideals
    Kurdachenko, Leonid A.
    Semko, Nikolai N.
    Subbotin, Igor Ya.
    OPEN MATHEMATICS, 2017, 15 : 92 - 100
  • [9] ON ISOMORPHISMS AND INVARIANTS OF FINITE DIMENSIONAL COMPLEX FILIFORM LEIBNIZ ALGEBRAS
    Rakhimov, I. S.
    Bekbaev, U. D.
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (12) : 4705 - 4738
  • [10] Cartan subalgebras in Lie algebras of associative algebras
    Siciliano, Salvatore
    COMMUNICATIONS IN ALGEBRA, 2006, 34 (12) : 4513 - 4522