Conjugacy of Cartan subalgebras of complex finite-dimensional Leibniz algebras

被引:43
作者
Omirov, B. A. [1 ]
机构
[1] Uzbek Acad Sci, Inst Math, Tashkent 700143, Uzbekistan
关键词
Cartan subalgebra; regular element; Lie algebra; Leibniz algebra;
D O I
10.1016/j.jalgebra.2006.01.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present work the properties of Cartan subalgebras and their connection with regular elements in finite-dimensional Lie algebras are extended to the case of Leibniz algebras. It is shown that Cartan subalgebras and regular elements of a Leibniz algebra correspond to Cartan subalgebras and regular elements of a Lie algebra by a natural homomorphism. Conjugacy of Cartan subalgebras of Leibniz algebras is shown. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:887 / 896
页数:10
相关论文
共 11 条
[1]   On nilpotent and simple Leibniz algebras [J].
Albeverio, S ;
Ayupov, SA ;
Omirov, BA .
COMMUNICATIONS IN ALGEBRA, 2005, 33 (01) :159-172
[2]  
ALBEVERIO S, 2004, CARTAN SUBALGEBRAS C
[3]  
Ayupov SA, 1998, ALGEBRA AND OPERATOR THEORY, P1
[4]   On some classes of nilpotent Leibniz algebras [J].
Ayupov, SA ;
Omirov, BA .
SIBERIAN MATHEMATICAL JOURNAL, 2001, 42 (01) :15-24
[5]   Homology and cohomology with coefficients, of an algebra over a quadratic operad [J].
Balavoine, D .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 132 (03) :221-258
[6]   Ten-term exact sequence of Leibniz homology [J].
Casas, JM ;
Pirashvili, T .
JOURNAL OF ALGEBRA, 2000, 231 (01) :258-264
[7]   Crossed extensions of Leibniz algebras [J].
Casas, JM .
COMMUNICATIONS IN ALGEBRA, 1999, 27 (12) :6253-6272
[8]   Leibniz homology of dialgebras of matrices [J].
Frabetti, A .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 129 (02) :123-141
[9]   The second Leibniz homology group for Kac-Moody Lie algebras [J].
Gao, Y .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2000, 32 :25-33
[10]  
JACOBSON N, 1962, LIE ALBEBRAS