Five-Dimensional Euclidean Space Cannot be Conformly Partitioned into Acute Simplices

被引:0
作者
Krizek, Michal [1 ]
机构
[1] Acad Sci, Inst Math, Zitna 25, CZ-11567 Prague 1, Czech Republic
来源
NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS 2009 | 2010年
关键词
ELLIPTIC PROBLEMS;
D O I
10.1007/978-3-642-11795-4_58
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that a point in the Euclidean space R-5 cannot be surrounded by a finite number of acute simplices. This fact implies that there does not exist a face-to-face partition of R-5 into acute simplices.
引用
收藏
页码:543 / 549
页数:7
相关论文
共 10 条
[1]   On Nonobtuse Simplicial Partitions [J].
Brandts, Jan ;
Korotov, Sergey ;
Krizek, Michal ;
Solc, Jakub .
SIAM REVIEW, 2009, 51 (02) :317-335
[2]  
Fiedler Miroslav, 1957, CZECH MATH J, V7, P463
[3]  
Gaddum JW., 1956, AM MATH MONTHLY, V63, P91, DOI DOI 10.2307/2306430
[4]   Discrete maximum principles for finite element solutions of nonlinear elliptic problems with mixed boundary conditions [J].
Karátson, J ;
Korotov, S .
NUMERISCHE MATHEMATIK, 2005, 99 (04) :669-698
[5]  
Korotov S, 2009, LECT NOTES COMPUT SC, V5434, P384
[6]  
Krizek M., 2010, DISCRETE COMPUT GEOM, V40
[7]   There is no face-to-face partition of R5 into acute simplices [J].
Krizek, Michal .
DISCRETE & COMPUTATIONAL GEOMETRY, 2006, 36 (02) :381-390
[8]  
Schlafli L., 1950, GESAMMELTE MATH ABHA
[9]  
UNGOR A, 2001, P 13 CAN C COMP GEOM, P169
[10]   A dihedral acute triangulation of the cube [J].
VanderZee, Evan ;
Hirani, Anil N. ;
Zharnitsky, Vadim ;
Guoy, Damrong .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2010, 43 (05) :445-452