Concentration analysis in Banach spaces

被引:22
|
作者
Solimini, Sergio [1 ]
Tintarev, Cyril [2 ]
机构
[1] Politecn Bari, Dipartimento Meccan Matemat & Management, Via Amendola 126-B, I-70126 Bari, Italy
[2] Uppsala Univ, Dept Math, POB 480, S-75106 Uppsala, Sweden
关键词
Weak topology; Delta-convergence; Banach spaces; concentration compactness; cocompact imbeddings; profile decompositions; Brezis-Lieb lemma; FIXED-POINT PROPERTY; WEAK-CONVERGENCE; NONEXPANSIVE-MAPPINGS; SCALAR CURVATURE; NONLINEARITIES; COMPACTNESS; NORMS;
D O I
10.1142/S0219199715500388
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The concept of a profile decomposition formalizes concentration compactness arguments on the functional-analytic level, providing a powerful refinement of the Banach-Alaoglu weak-star compactness theorem. We prove existence of profile decompositions for general bounded sequences in uniformly convex Banach spaces equipped with a group of bijective isometries, thus generalizing analogous results previously obtained for Sobolev spaces and for Hilbert spaces. Profile decompositions in uniformly convex Banach spaces are based on the notion of Delta-convergence by Lim [Remarks on some fixed point theorems, Proc. Amer. Math. Soc. 60 (1976) 179-182] instead of weak convergence, and the two modes coincide if and only if the norm satisfies the well-known Opial condition, in particular, in Hilbert spaces and l(p)-spaces, but not in L-p(R-N), p not equal 2 Delta-convergence appears naturally in the context of fixed point theory for non-expansive maps. The paper also studies the connection of Delta-convergence with the Brezis-Lieb lemma and gives a version of the latter without an assumption of convergence a.e.
引用
收藏
页数:33
相关论文
共 50 条
  • [41] A characterization of reflexive Banach spaces
    Matouskova, E
    Stegall, C
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (04) : 1083 - 1090
  • [42] On the defect of compactness in Banach spaces
    Solimini, Sergio
    Tintarev, Cyril
    COMPTES RENDUS MATHEMATIQUE, 2015, 353 (10) : 899 - 903
  • [43] GENERALIZED HYBRID MAPPINGS IN HILBERT SPACES AND BANACH SPACES
    Hsu, Ming-Hsiu
    Takahashi, Wataru
    Yao, Jen-Chih
    TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (01): : 129 - 149
  • [44] Isometric embedding of finite ultrametric spaces in Banach spaces
    Shkarin, SA
    TOPOLOGY AND ITS APPLICATIONS, 2004, 142 (1-3) : 13 - 17
  • [45] Strong Convergence of Mann's Iteration Process in Banach Spaces
    Xu, Hong-Kun
    Altwaijry, Najla
    Chebbi, Souhail
    MATHEMATICS, 2020, 8 (06)
  • [46] Iterative methods for zero points of accretive operators in Banach spaces
    Wang, Sheng Hua
    Cho, Sun Young
    Qin, Xiao Long
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2012, 20 (01): : 329 - 343
  • [47] Convergence Theorems for Accretive Operators with Nonlinear Mappings in Banach Spaces
    Song, Yan-Lai
    Ceng, Lu-Chuan
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [48] Some results on strong convergence for nonlinear maps in Banach spaces
    Latif, Abdul
    Alhomaidan, Adnan Salem
    Qin, Xiaolong
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (05): : 2828 - 2836
  • [49] CHOICE FREE FIXED POINT PROPERTY IN SEPARABLE BANACH SPACES
    Gregoriades, Vassilios
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (05) : 2143 - 2157
  • [50] Strong convergence of an iterative algorithm for variational inequalities in Banach spaces
    Yao, Yonghong
    Maruster, Stefan
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (1-2) : 325 - 329