Concentration analysis in Banach spaces

被引:22
|
作者
Solimini, Sergio [1 ]
Tintarev, Cyril [2 ]
机构
[1] Politecn Bari, Dipartimento Meccan Matemat & Management, Via Amendola 126-B, I-70126 Bari, Italy
[2] Uppsala Univ, Dept Math, POB 480, S-75106 Uppsala, Sweden
关键词
Weak topology; Delta-convergence; Banach spaces; concentration compactness; cocompact imbeddings; profile decompositions; Brezis-Lieb lemma; FIXED-POINT PROPERTY; WEAK-CONVERGENCE; NONEXPANSIVE-MAPPINGS; SCALAR CURVATURE; NONLINEARITIES; COMPACTNESS; NORMS;
D O I
10.1142/S0219199715500388
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The concept of a profile decomposition formalizes concentration compactness arguments on the functional-analytic level, providing a powerful refinement of the Banach-Alaoglu weak-star compactness theorem. We prove existence of profile decompositions for general bounded sequences in uniformly convex Banach spaces equipped with a group of bijective isometries, thus generalizing analogous results previously obtained for Sobolev spaces and for Hilbert spaces. Profile decompositions in uniformly convex Banach spaces are based on the notion of Delta-convergence by Lim [Remarks on some fixed point theorems, Proc. Amer. Math. Soc. 60 (1976) 179-182] instead of weak convergence, and the two modes coincide if and only if the norm satisfies the well-known Opial condition, in particular, in Hilbert spaces and l(p)-spaces, but not in L-p(R-N), p not equal 2 Delta-convergence appears naturally in the context of fixed point theory for non-expansive maps. The paper also studies the connection of Delta-convergence with the Brezis-Lieb lemma and gives a version of the latter without an assumption of convergence a.e.
引用
收藏
页数:33
相关论文
共 50 条
  • [21] On the fixed point property for orbital contractions in Banach spaces
    Redjel, Najeh
    Dehici, Abdelkader
    JOURNAL OF ANALYSIS, 2022, 30 (02) : 621 - 635
  • [22] On an open question of Takahashi for nonspreading mappings in Banach spaces
    Naraghirad, Eskandar
    FIXED POINT THEORY AND APPLICATIONS, 2013,
  • [23] Convergence theorems for continuous pseudocontractive mappings in Banach spaces
    Guo, Weiping
    Choi, Min Seok
    Cho, Yeol Je
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [24] Inertial Krasnoselskii-Mann Method in Banach Spaces
    Shehu, Yekini
    Gibali, Aviv
    MATHEMATICS, 2020, 8 (04)
  • [25] On weak*-extensible Banach spaces
    Castillo, Jesus M. F.
    Gonzalez, Manuel
    Papini, Pier Luigi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (13) : 4936 - 4941
  • [26] Banach spaces of universal disposition
    Aviles, Antonio
    Cabello Sanchez, Felix
    Castillo, Jesus M. F.
    Gonzalez, Manuel
    Moreno, Yolanda
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (09) : 2347 - 2361
  • [27] Positive forms on Banach spaces
    B. Farkas
    M. Matolcsi
    Acta Mathematica Hungarica, 2003, 99 : 43 - 55
  • [28] BANACH SPACES AS DATA TYPES
    Normann, Dag
    LOGICAL METHODS IN COMPUTER SCIENCE, 2011, 7 (02)
  • [29] ON DUAL OF BANACH SEQUENCE SPACES
    Ledari, A. A.
    Parvaneh, V.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2013, 82 (02): : 159 - 164
  • [30] Coefficient Quantization in Banach Spaces
    S. J. Dilworth
    E. Odell
    T. Schlumprecht
    A. Zsák
    Foundations of Computational Mathematics, 2008, 8 : 703 - 736