Concentration analysis in Banach spaces

被引:22
|
作者
Solimini, Sergio [1 ]
Tintarev, Cyril [2 ]
机构
[1] Politecn Bari, Dipartimento Meccan Matemat & Management, Via Amendola 126-B, I-70126 Bari, Italy
[2] Uppsala Univ, Dept Math, POB 480, S-75106 Uppsala, Sweden
关键词
Weak topology; Delta-convergence; Banach spaces; concentration compactness; cocompact imbeddings; profile decompositions; Brezis-Lieb lemma; FIXED-POINT PROPERTY; WEAK-CONVERGENCE; NONEXPANSIVE-MAPPINGS; SCALAR CURVATURE; NONLINEARITIES; COMPACTNESS; NORMS;
D O I
10.1142/S0219199715500388
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The concept of a profile decomposition formalizes concentration compactness arguments on the functional-analytic level, providing a powerful refinement of the Banach-Alaoglu weak-star compactness theorem. We prove existence of profile decompositions for general bounded sequences in uniformly convex Banach spaces equipped with a group of bijective isometries, thus generalizing analogous results previously obtained for Sobolev spaces and for Hilbert spaces. Profile decompositions in uniformly convex Banach spaces are based on the notion of Delta-convergence by Lim [Remarks on some fixed point theorems, Proc. Amer. Math. Soc. 60 (1976) 179-182] instead of weak convergence, and the two modes coincide if and only if the norm satisfies the well-known Opial condition, in particular, in Hilbert spaces and l(p)-spaces, but not in L-p(R-N), p not equal 2 Delta-convergence appears naturally in the context of fixed point theory for non-expansive maps. The paper also studies the connection of Delta-convergence with the Brezis-Lieb lemma and gives a version of the latter without an assumption of convergence a.e.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] Polish spaces of Banach spaces
    Cuth, Marek
    Dolezal, Martin
    Doucha, Michal
    Kurka, Ondrej
    FORUM OF MATHEMATICS SIGMA, 2022, 10
  • [2] On the projection dynamical systems in Banach spaces
    Alber, Ya. I.
    Yao, Jen-Chih
    TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (03): : 819 - 847
  • [3] ORTHOGONALLY CONVEX BANACH SEQUENCE SPACES
    Jimenez-Melado, Antonio
    Llorens-Fuster, Enrique
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2017, 18 (01) : 95 - 103
  • [4] Measures of weak noncompactness in Banach spaces
    Angosto, C.
    Cascales, B.
    TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (07) : 1412 - 1421
  • [5] ZERO AND FIXED POINTS IN BANACH SPACES
    Cho, Sun Young
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2018, 19 (11) : 1825 - 1836
  • [6] An extension of the notion of orthogonality to Banach spaces
    Saidi, FB
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 267 (01) : 29 - 47
  • [7] HAMMING GRAPHS AND CONCENTRATION PROPERTIES IN NON-QUASI-REFLEXIVE BANACH SPACES
    Fovelle, A.
    HOUSTON JOURNAL OF MATHEMATICS, 2022, 48 (03): : 539 - 579
  • [8] A class of Banach spaces
    Nasserddine, Wassim
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2007, 83 (04) : 56 - 59
  • [9] Wavelets in Banach spaces
    Kisil, VV
    ACTA APPLICANDAE MATHEMATICAE, 1999, 59 (01) : 79 - 109
  • [10] Wavelets in Banach Spaces
    Vladimir V. Kisil
    Acta Applicandae Mathematica, 1999, 59 : 79 - 109