Soluble field theory with a massless gauge invariant limit

被引:0
作者
Hagen, CR [1 ]
机构
[1] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
关键词
D O I
10.1103/PhysRevD.61.085004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
It is shown that there exists a soluble four parameter model in 1 + 1 dimensions all of whose propagators can be determined in terms of the corresponding known propagators of the vector coupling theory. Unlike the latter case, however, the limit of a zero bare mass is nonsingular and yields a nontrivial theory with a rigorously unbroken gauge invariance.
引用
收藏
页数:4
相关论文
共 50 条
[41]   SMOOTH MASSLESS LIMIT OF FIELD-THEORIES [J].
FRONSDAL, C .
NUCLEAR PHYSICS B, 1980, 167 (1-2) :237-248
[42]   ANYON MEAN-FIELD AS AN EXACT LIMIT OF A GAUGE-THEORY [J].
IENGO, R .
NUCLEAR PHYSICS B, 1993, :99-103
[43]   LINEAR-APPROXIMATION FOR THE MASSLESS LORENTZ GAUGE FIELD [J].
MIYAMOTO, S ;
NAKANO, T ;
OHTANI, T ;
TAMURA, Y .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (04) :1236-1240
[44]   GAUGE-THEORY WITH GAUGE-INVARIANT FIELDS [J].
LESCHE, B .
LETTERE AL NUOVO CIMENTO, 1980, 28 (18) :616-618
[45]   Purely virtual extension of quantum field theory for gauge invariant fields: Yang–Mills theory [J].
Damiano Anselmi .
The European Physical Journal C, 83
[46]   Gauge invariant 1PI effective action for superstring field theory [J].
Sen, Ashoke .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (06)
[47]   Gauge invariant operators and closed string scattering in open string field theory [J].
Alishahiha, M ;
Garousi, MR .
PHYSICS LETTERS B, 2002, 536 (1-2) :129-137
[48]   Anomalous dimensions of gauge-invariant amplitudes in massless effective gauge theories of strongly correlated systems [J].
Gusynin, VP ;
Khveshchenko, DV ;
Reenders, M .
PHYSICAL REVIEW B, 2003, 67 (11) :11
[49]   Gauge invariant 1PI effective action for superstring field theory [J].
Ashoke Sen .
Journal of High Energy Physics, 2015
[50]   A NONLINEAR GAUGE-INVARIANT FIELD-THEORY OF ELEMENTARY-PARTICLES [J].
SHARMAN, PH ;
COOPERSTOCK, FI .
CANADIAN JOURNAL OF PHYSICS, 1990, 68 (06) :531-540