Semantic segmentation of multispectral photoacoustic images using deep learning

被引:21
作者
Schellenberg, Melanie [1 ,2 ,3 ]
Dreher, Kris K. [1 ,4 ]
Holzwarth, Niklas [1 ]
Isensee, Fabian [5 ]
Reinke, Annika [1 ,2 ,3 ,5 ]
Schreck, Nicholas [6 ]
Seitel, Alexander [1 ]
Tizabi, Minu D. [1 ]
Maier-Hein, Lena [1 ,2 ,3 ,5 ,7 ]
Groehl, Janek [1 ]
机构
[1] German Canc Res Ctr, Comp Assisted Med Intervent CAMI, Heidelberg, Germany
[2] Heidelberg Univ, Fac Math & Comp Sci, Heidelberg, Germany
[3] Helmholtz Informat & Data Sci Sch Hlth, HIDSS4Health, Heidelberg, Germany
[4] Heidelberg Univ, Fac Phys & Astron, Heidelberg, Germany
[5] German Canc Res Ctr, Div Med Image Comp, HI Appl Comp Vis Lab, Heidelberg, Germany
[6] German Canc Res Ctr, Div Biostat, Heidelberg, Germany
[7] Heidelberg Univ, Med Fac, Heidelberg, Germany
基金
欧洲研究理事会;
关键词
Medical image segmentation; Deep learning; Multispectral imaging; Photoacoustics; Optoacoustics;
D O I
10.1016/j.pacs.2022.100341
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Photoacoustic (PA) imaging has the potential to revolutionize functional medical imaging in healthcare due to the valuable information on tissue physiology contained in multispectral photoacoustic measurements. Clinical translation of the technology requires conversion of the high-dimensional acquired data into clinically relevant and interpretable information. In this work, we present a deep learning-based approach to semantic segmentation of multispectral photoacoustic images to facilitate image interpretability. Manually annotated photoacoustic and ultrasound imaging data are used as reference and enable the training of a deep learning-based segmentation algorithm in a supervised manner. Based on a validation study with experimentally acquired data from 16 healthy human volunteers, we show that automatic tissue segmentation can be used to create powerful analyses and visualizations of multispectral photoacoustic images. Due to the intuitive representation of high-dimensional information, such a preprocessing algorithm could be a valuable means to facilitate the clinical translation of photoacoustic imaging.
引用
收藏
页数:9
相关论文
共 38 条
[1]  
Antonelli M., ARXIV PREPRINT ARXIV
[2]   A review of clinical photoacoustic imaging: Current and future trends [J].
Attia, Amalina Binte Ebrahim ;
Balasundaram, Ghayathri ;
Moothanchery, Mohesh ;
Dinish, U. S. ;
Bi, Renzhe ;
Ntziachristos, Vasilis ;
Olivo, Malini .
PHOTOACOUSTICS, 2019, 16
[3]   Biomedical photoacoustic imaging [J].
Beard, Paul .
INTERFACE FOCUS, 2011, 1 (04) :602-631
[4]   Multispectral optoacoustic tomography of the human breast: characterisation of healthy tissue and malignant lesions using a hybrid ultrasound-optoacoustic approach [J].
Becker, Anne ;
Masthoff, Max ;
Claussen, Jing ;
Ford, Steven James ;
Roll, Wolfgang ;
Burg, Matthias ;
Barth, Peter J. ;
Heindel, Walter ;
Schaefers, Michael ;
Eisenblaetter, Michel ;
Wildgruber, Moritz .
EUROPEAN RADIOLOGY, 2018, 28 (02) :602-609
[5]   Photoacoustic imaging using genetically encoded reporters: a review [J].
Brunker, Joanna ;
Yao, Junjie ;
Laufer, Jan ;
Bohndiek, Sarah E. .
JOURNAL OF BIOMEDICAL OPTICS, 2017, 22 (07)
[6]   A sparse deep learning approach for automatic segmentation of human vasculature in multispectral optoacoustic tomography [J].
Chlis, Nikolaos-Kosmas ;
Karlas, Angelos ;
Fasoula, Nikolina-Alexia ;
Kallmayer, Michael ;
Eckstein, Hans-Henning ;
Theis, Fabian J. ;
Ntziachristos, Vasilis ;
Marr, Carsten .
PHOTOACOUSTICS, 2020, 20
[7]   MEASURES OF THE AMOUNT OF ECOLOGIC ASSOCIATION BETWEEN SPECIES [J].
DICE, LR .
ECOLOGY, 1945, 26 (03) :297-302
[8]  
Gerl Stefan, 2020, Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. 23rd International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12266), P309, DOI 10.1007/978-3-030-59725-2_30
[9]  
Grohl J., SCI REP-UK, V11, P1
[10]  
Grohl J., PHOTOACOUSTICS