MOF derived CoP-decorated nitrogen-doped carbon polyhedrons/reduced graphene oxide composites for high performance supercapacitors

被引:59
|
作者
Zhu, Jun [1 ]
Shen, Xiaoping [1 ]
Kong, Lirong [1 ]
Zhu, Guoxing [1 ]
Ji, Zhenyuan [1 ]
Xu, Keqiang [1 ]
Li, Baolong [2 ]
Zhou, Hu [3 ]
Yue, Xiaoyang [1 ]
机构
[1] Jiangsu Univ, Sch Mat Sci & Engn, Sch Chem & Chem Engn, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Soochow Univ, Coll Chem Chem Engn & Mat Sci, State & Local Joint Engn Lab Funct Polymer Mat, Suzhou 215123, Peoples R China
[3] Jiangsu Univ Sci & Technol, Sch Mat Sci & Engn, Zhenjiang 212003, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
FACILE SYNTHESIS; NANOPOROUS CARBON; COBALT PHOSPHIDE; EFFICIENT; CO3O4; FRAMEWORKS; ANODE;
D O I
10.1039/c9dt01629e
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
ZIF-67 derived CoP-decorated nitrogen-doped porous carbon (CoP-NPC) polyhedra anchored on reduced graphene oxide (RGO) sheets have been successfully prepared through an efficient pyrolysis-phosphidation-assembly strategy. The resulting CoP-NPC/RGO composite as an electrode for supercapacitors shows an enhanced electrochemical performance with high capacitances of 466.6 F g(-1) at 1 A g(-1) and 252 F g(-1) at 20 A g(-1), as well as 94.7% of capacitance retention after 10 000 cycles in 1 M H2SO4 solution. Moreover, the symmetrical two-electrode device assembled from CoP-NPC/RGO electrodes delivers a high energy density of 12 W h kg(-1) at a power density of 500 W kg(-1) and excellent long-term cycling stability (93% of the initial capacitance after 10 000 cycles at 10 A g(-1)). This superior electrochemical performance of CoP-NPC/RGO can be ascribed to its 3D interconnected porous structure and the synergistic effect between CoP and the nitrogen-doped carbon matrix. The unique architecture of the composites can effectively enhance the electrochemical performance by shortening the diffusion distance of electrolyte ions and improving the electrical conductivity and the contact area between active materials and the electrolyte. The excellent electrochemical performances make CoP-NPC/RGO a promising electrode material for high-performance supercapacitors.
引用
收藏
页码:10661 / 10668
页数:8
相关论文
共 50 条
  • [41] Nitrogen-doped activated carbon/graphene composites as high-performance supercapacitor electrodes
    Li, Yue
    Shang, Tong-Xin
    Gao, Jian-Min
    Jin, Xiao-Juan
    RSC ADVANCES, 2017, 7 (31): : 19098 - 19105
  • [42] Cellulose-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitors
    Peng Song
    XiaoPing Shen
    XiaoMei He
    KaiHui Feng
    LiRong Kong
    ZhenYuan Ji
    LinZhi Zhai
    GuoXing Zhu
    DongYang Zhang
    Cellulose, 2019, 26 : 1195 - 1208
  • [43] Nitrogen-doped Porous Carbon Derived from Rapeseed residues for High-performance Supercapacitors
    Sun, Kanjun
    Guo, Dongyang
    Zheng, Xiaoping
    Zhu, Yanrong
    Zheng, Yanping
    Ma, Mingguang
    Zhao, Guohu
    Ma, Guofu
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2016, 11 (06): : 4743 - 4754
  • [44] Nitrogen-doped activated carbon derived from prawn shells for high-performance supercapacitors
    Gao, Feng
    Qu, Jiangying
    Zhao, Zongbin
    Wang, Zhiyu
    Qiu, Jieshan
    ELECTROCHIMICA ACTA, 2016, 190 : 1134 - 1141
  • [45] Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors
    Han, Jinpeng
    Xu, Guiyin
    Ding, Bing
    Pan, Jin
    Dou, Hui
    MacFarlane, Douglas R.
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (15) : 5352 - 5357
  • [46] Synthesis of nitrogen-doped polymeric resin-derived porous carbon for high performance supercapacitors
    Zhang, Jinliang
    Zhang, Wenfeng
    Han, Minfang
    Pang, Jie
    Xiang, Yu
    Cao, Gaoping
    Yang, Yusheng
    MICROPOROUS AND MESOPOROUS MATERIALS, 2018, 270 : 204 - 210
  • [47] Hierarchical nitrogen-doped porous carbon derived from lecithin for high-performance supercapacitors
    Demir, Muslum
    Saraswat, Sushil Kumar
    Gupta, Ram B.
    RSC ADVANCES, 2017, 7 (67): : 42430 - 42442
  • [48] Cellulose-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitors
    Song, Peng
    Shen, XiaoPing
    He, XiaoMei
    Feng, KaiHui
    Kong, LiRong
    Ji, ZhenYuan
    Zhai, LinZhi
    Zhu, GuoXing
    Zhang, DongYang
    CELLULOSE, 2019, 26 (02) : 1195 - 1208
  • [49] Building a High-Performance Supercapacitor with Nitrogen-Doped Graphene Quantum Dots/MOF-Derived Porous Carbon Nanosheets
    Xiao-Min, Wu
    Mao Jian
    Zhou Zhi-Peng
    Zhang Chen
    Bu Jing-Ting
    Li Zhen
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2020, 36 (07) : 1298 - 1308
  • [50] MOF-derived and nitrogen-doped ZnSe polyhedra encapsulated by reduced graphene oxide as the anode for lithium and sodium storage
    Liu X.
    Liu Y.
    Feng M.
    Fan L.-Z.
    Feng, Ming (mingfeng@jlnu.edu.cn), 2018, Royal Society of Chemistry (06) : 23621 - 23627