Interactions between plant growth and soil nutrient cycling under elevated CO2:: a meta-analysis

被引:464
作者
de Graaff, Marie-Anne
van Groenigen, Keess-Jan
Six, Johan
Hungate, Bruce
van Kessel, Chris
机构
[1] Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA
[2] Wageningen Univ, Dept Environm Sci, NL-6700 AA Wageningen, Netherlands
[3] No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA
关键词
elevated CO2; meta-analysis; plant production; soil C cycling; soil N cycling;
D O I
10.1111/j.1365-2486.2006.01240.x
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
free air carbon dioxide enrichment (FACE) and open top chamber (OTC) studies are valuable tools for evaluating the impact of elevated atmospheric CO2 on nutrient cycling in terrestrial ecosystems. Using meta-analytic techniques, we summarized the results of 117 studies on plant biomass production, soil organic matter dynamics and biological N-2 fixation in FACE and OTC experiments. The objective of the analysis was to determine whether elevated CO2 alters nutrient cycling between plants and soil and if so, what the implications are for soil carbon (C) sequestration. Elevated CO2 stimulated gross N immobilization by 22%, whereas gross and net N mineralization rates remained unaffected. In addition, the soil C : N ratio and microbial N contents increased under elevated CO2 by 3.8% and 5.8%, respectively. Microbial C contents and soil respiration increased by 7.1% and 17.7%, respectively. Despite the stimulation of microbial activity, soil C input still caused soil C contents to increase by 1.2% yr(-1). Namely, elevated CO2 stimulated overall above- and belowground plant biomass by 21.5% and 28.3%, respectively, thereby outweighing the increase in CO2 respiration. In addition, when comparing experiments under both low and high N availability, soil C contents (+2.2% yr(-1)) and above- and belowground plant growth (+20.1% and+33.7%) only increased under elevated CO2 in experiments receiving the high N treatments. Under low N availability, above- and belowground plant growth increased by only 8.8% and 14.6%, and soil C contents did not increase. Nitrogen fixation was stimulated by elevated CO2 only when additional nutrients were supplied. These results suggest that the main driver of soil C sequestration is soil C input through plant growth, which is strongly controlled by nutrient availability. In unfertilized ecosystems, microbial N immobilization enhances acclimation of plant growth to elevated CO2 in the long-term. Therefore, increased soil C input and soil C sequestration under elevated CO2 can only be sustained in the long-term when additional nutrients are supplied.
引用
收藏
页码:2077 / 2091
页数:15
相关论文
共 91 条
[1]  
Adams DC, 1997, ECOLOGY, V78, P1277, DOI 10.1890/0012-9658(1997)078[1277:RTFMAO]2.0.CO
[2]  
2
[3]   What have we learned from 15 years of free-air CO2 enrichment (FACE)?: A meta-analytic review of the responses of photosynthesis, canopy [J].
Ainsworth, EA ;
Long, SP .
NEW PHYTOLOGIST, 2005, 165 (02) :351-371
[4]   A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield [J].
Ainsworth, EA ;
Davey, PA ;
Bernacchi, CJ ;
Dermody, OC ;
Heaton, EA ;
Moore, DJ ;
Morgan, PB ;
Naidu, SL ;
Ra, HSY ;
Zhu, XG ;
Curtis, PS ;
Long, SP .
GLOBAL CHANGE BIOLOGY, 2002, 8 (08) :695-709
[5]   Effects of atmospheric CO2 concentration on wheat yield:: review of results from experiments using various approaches to control CO2 concentration [J].
Amthor, JS .
FIELD CROPS RESEARCH, 2001, 73 (01) :1-34
[6]   PHYSIOLOGICAL METHOD FOR QUANTITATIVE MEASUREMENT OF MICROBIAL BIOMASS IN SOILS [J].
ANDERSON, JPE ;
DOMSCH, KH .
SOIL BIOLOGY & BIOCHEMISTRY, 1978, 10 (03) :215-221
[7]   EFFECT OF NODULATION, NITROGEN-FIXATION AND CO2 ENRICHMENT ON THE PHYSIOLOGY, GROWTH AND DRY MASS ALLOCATION OF SEEDLINGS OF ALNUS-RUBRA BONG [J].
ARNONE, JA ;
GORDON, JC .
NEW PHYTOLOGIST, 1990, 116 (01) :55-66
[8]   Symbiotic N2 fixation in a high Alpine grassland:: effects of four growing seasons of elevated CO2 [J].
Arnone, JA .
FUNCTIONAL ECOLOGY, 1999, 13 (03) :383-387
[9]  
B A Kimball, 2002, [应用生态学报, The Journal of Applied Ecology], V13, P1323
[10]   Growth of eastern cottonwoods (Populus deltoides) in elevated [CO2] stimulates stand-level respiration and rhizodeposition of carbohydrates, accelerates soil nutrient depletion, yet stimulates above- and belowground biomass production [J].
Barron-Gafford, G ;
Martens, D ;
Grieve, K ;
Biel, K ;
Kudeyarov, V ;
McLain, JET ;
Lipson, D ;
Murthy, R .
GLOBAL CHANGE BIOLOGY, 2005, 11 (08) :1220-1233