Predicting mortality over different time horizons: which data elements are needed?

被引:22
作者
Goldstein, Benjamin A. [1 ,2 ]
Pencina, Michael J. [1 ,2 ]
Montez-Rath, Maria E. [3 ]
Winkelmayer, Wolfgang C. [4 ]
机构
[1] Duke Univ, Dept Biostat & Bioinformat, Durham, NC USA
[2] Duke Clin Res Inst, Ctr Predict Med, Durham, NC USA
[3] Stanford Univ, Sch Med, Div Nephrol, Palo Alto, CA 94304 USA
[4] Baylor Coll Med, Nephrol Sect, Houston, TX 77030 USA
关键词
Electronic Health Records; hemodialysis; ESRD; predictive modeling; HEART-FAILURE; RISK; MODELS; DEATH; HOSPITALIZATION; STRATIFICATION; REGRESSION; DISEASE; CARE;
D O I
10.1093/jamia/ocw057
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Objective: Electronic health records (EHRs) are a resource for "big data" analytics, containing a variety of data elements. We investigate how different categories of information contribute to prediction of mortality over different time horizons among patients undergoing hemodialysis treatment. Material and Methods: We derived prediction models for mortality over 7 time horizons using EHR data on older patients from a national chain of dialysis clinics linked with administrative data using LASSO (least absolute shrinkage and selection operator) regression. We assessed how different categories of information relate to risk assessment and compared discrete models to time-to-event models. Results: The best predictors used all the available data (c-statistic ranged from 0.72-0.76), with stronger models in the near term. While different variable groups showed different utility, exclusion of any particular group did not lead to a meaningfully different risk assessment. Discrete time models performed better than time-to-event models. Conclusions: Different variable groups were predictive over different time horizons, with vital signs most predictive for near-term mortality and demographic and comorbidities more important in long-term mortality.
引用
收藏
页码:176 / 181
页数:6
相关论文
共 29 条
  • [1] [Anonymous], 2014, USRDS 2014 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States
  • [2] [Anonymous], 2012, R LANG ENV STAT COMP
  • [3] [Anonymous], J UROL
  • [4] Prognostic Stratification in Older Adults Commencing Dialysis
    Cheung, Katharine L.
    Montez-Rath, Maria E.
    Chertow, Glenn M.
    Winkelmayer, Wolfgang C.
    Periyakoil, Vyjeyanthi S.
    Tamura, Manjula Kurella
    [J]. JOURNALS OF GERONTOLOGY SERIES A-BIOLOGICAL SCIENCES AND MEDICAL SCIENCES, 2014, 69 (08): : 1033 - 1039
  • [5] Predicting First-Year Mortality in Incident Dialysis Patients with End-Stage Renal Disease - The UREA5 Study
    Chua, Horng-Ruey
    Lau, Titus
    Luo, Nan
    Ma, Valerie
    Teo, Boon-Wee
    Haroon, Sabrina
    Choy, Kwan-Loong
    Lim, Yoke-Ching
    Chng, Wei-Qiang
    Ong, Li-Zhen
    Wong, Tsz-Yeung
    Lee, Evan J.
    [J]. BLOOD PURIFICATION, 2014, 37 (02) : 85 - 92
  • [6] US Renal Data System 2012 Annual Data Report
    Collins, Allan J.
    Foley, Robert N.
    Herzog, Charles
    Chavers, Blanche
    Gilbertson, David
    Herzog, Charles
    Ishani, Areef
    Johansen, Kirsten
    Kasiske, Bertram
    Kutner, Nancy
    Liu, Jiannong
    St. Peter, Wendy
    Ding, Shu
    Guo, Haifeng
    Kats, Allyson
    Lamb, Kenneth
    Li, Shuling
    Li, Suying
    Roberts, Tricia
    Skeans, Melissa
    Snyder, Jon
    Solid, Craig
    Thompson, Bryn
    Weinhandl, Eric
    Xiong, Hui
    Yusef, Akeem
    Zaun, David
    Arko, Cheryl
    Chen, Shu-Cheng
    Daniels, Frank
    Ebben, James
    Frazier, Eric
    Hanzlik, Christopher
    Johnson, Roger
    Sheets, Daniel
    Wang, Xinyue
    Forrest, Beth
    Constantini, Edward
    Everson, Susan
    Eggers, Paul
    Agodoa, Lawrence
    [J]. AMERICAN JOURNAL OF KIDNEY DISEASES, 2013, 61 (01) : E1 - E459
  • [7] Crowson C.S., 2014, Stat Methods Med Res
  • [8] Identifying Patients at High Risk of a Cardiovascular Event in the Near Future Current Status and Future Directions: Report of a National Heart, Lung, and Blood Institute Working Group
    Eagle, Kim A.
    Ginsburg, Geoffrey S.
    Musunuru, Kiran
    Aird, William C.
    Balaban, Robert S.
    Bennett, Susan K.
    Blumenthal, Roger S.
    Coughlin, Shaun R.
    Davidson, Karina W.
    Frohlich, Edward D.
    Greenland, Philip
    Jarvik, Gail P.
    Libby, Peter
    Pepine, Carl J.
    Ruskin, Jeremy N.
    Stillman, Arthur E.
    Van Eyk, Jennifer E.
    Tolunay, H. Eser
    McDonald, Cheryl L.
    Smith, Sidney C., Jr.
    [J]. CIRCULATION, 2010, 121 (12) : 1447 - 1454
  • [9] Validated, Electronic Health Record Deployable Prediction Models for Assessing Patient Risk of 30-Day Rehospitalization and Mortality in Older Heart Failure Patients
    Eapen, Zubin J.
    Liang, Li
    Fonarow, Gregg C.
    Heidenreich, Paul A.
    Curtis, Lesley H.
    Peterson, Eric D.
    Hernandez, Adrian F.
    [J]. JACC-HEART FAILURE, 2013, 1 (03) : 245 - 251
  • [10] Elandt-Johnson, 1980, TIME DEPENDENT LOGIS