Multiple Kernel Learning with Random Effects for Predicting Longitudinal Outcomes and Data Integration

被引:11
作者
Chen, Tianle [1 ]
Zeng, Donglin [2 ]
Wang, Yuanjia [3 ]
机构
[1] Biogen Inc, Cambridge, MA 02142 USA
[2] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
[3] Columbia Univ, Mailman Sch Publ Hlth, Dept Biostat, New York, NY 10032 USA
关键词
Disease prediction; Integrative analysis; Latent effects; Statistical learning; SUPPORT VECTOR MACHINE; ALZHEIMERS-DISEASE; IMAGING BIOMARKERS;
D O I
10.1111/biom.12343
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Predicting disease risk and progression is one of the main goals in many clinical research studies. Cohort studies on the natural history and etiology of chronic diseases span years and data are collected at multiple visits. Although, kernel-based statistical learning methods are proven to be powerful for a wide range of disease prediction problems, these methods are only well studied for independent data, but not for longitudinal data. It is thus important to develop time-sensitive prediction rules that make use of the longitudinal nature of the data. In this paper, we develop a novel statistical learning method for longitudinal data by introducing subject-specific short-term and long-term latent effects through a designed kernel to account for within-subject correlation of longitudinal measurements. Since the presence of multiple sources of data is increasingly common, we embed our method in a multiple kernel learning framework and propose a regularized multiple kernel statistical learning with random effects to construct effective nonparametric prediction rules. Our method allows easy integration of various heterogeneous data sources and takes advantage of correlation among longitudinal measures to increase prediction power. We use different kernels for each data source taking advantage of the distinctive feature of each data modality, and then optimally combine data across modalities. We apply the developed methods to two large epidemiological studies, one on Huntington's disease and the other on Alzheimer's Disease (Alzheimer's Disease Neuroimaging Initiative, ADNI) where we explore a unique opportunity to combine imaging and genetic data to study prediction of mild cognitive impairment, and show a substantial gain in performance while accounting for the longitudinal aspect of the data.
引用
收藏
页码:918 / 928
页数:11
相关论文
共 21 条
[1]  
[Anonymous], 2004, INT C MACH LEARN
[2]   APOE genotype effects on Alzheimer's disease onset and epidemiology [J].
Ashford, JW .
JOURNAL OF MOLECULAR NEUROSCIENCE, 2004, 23 (03) :157-165
[3]   Development of a kernel function for clinical data [J].
Daemen, Anneleen ;
De Moor, Bart .
2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, :5913-5917
[4]   Combining Early Markers Strongly Predicts Conversion from Mild Cognitive Impairment to Alzheimer's Disease [J].
Devanand, Davangere P. ;
Liu, Xinhua ;
Tabert, Matthias H. ;
Pradhaban, Gnanavalli ;
Cuasay, Katrina ;
Bell, Karen ;
de Leon, Mony J. ;
Doty, Richard L. ;
Stern, Yaakov ;
Pelton, Gregory H. .
BIOLOGICAL PSYCHIATRY, 2008, 64 (10) :871-879
[5]  
Diggle PJ, 2002, ANAL LONGITUDINAL DA
[6]   Core candidate neurochemical and imaging biomarkers of Alzheimer's disease [J].
Hampel, Harald ;
Buerger, Katharina ;
Teipel, Stefan J. ;
Bokde, Arun L. W. ;
Zetterberg, Henrik ;
Blennow, Kaj .
ALZHEIMERS & DEMENTIA, 2008, 4 (01) :38-48
[7]   Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease [J].
Harold, Denise ;
Abraham, Richard ;
Hollingworth, Paul ;
Sims, Rebecca ;
Gerrish, Amy ;
Hamshere, Marian L. ;
Pahwa, Jaspreet Singh ;
Moskvina, Valentina ;
Dowzell, Kimberley ;
Williams, Amy ;
Jones, Nicola ;
Thomas, Charlene ;
Stretton, Alexandra ;
Morgan, Angharad R. ;
Lovestone, Simon ;
Powell, John ;
Proitsi, Petroula ;
Lupton, Michelle K. ;
Brayne, Carol ;
Rubinsztein, David C. ;
Gill, Michael ;
Lawlor, Brian ;
Lynch, Aoibhinn ;
Morgan, Kevin ;
Brown, Kristelle S. ;
Passmore, Peter A. ;
Craig, David ;
McGuinness, Bernadette ;
Todd, Stephen ;
Holmes, Clive ;
Mann, David ;
Smith, A. David ;
Love, Seth ;
Kehoe, Patrick G. ;
Hardy, John ;
Mead, Simon ;
Fox, Nick ;
Rossor, Martin ;
Collinge, John ;
Maier, Wolfgang ;
Jessen, Frank ;
Schuermann, Britta ;
van den Bussche, Hendrik ;
Heuser, Isabella ;
Kornhuber, Johannes ;
Wiltfang, Jens ;
Dichgans, Martin ;
Froelich, Lutz ;
Hampel, Harald ;
Huell, Michael .
NATURE GENETICS, 2009, 41 (10) :1088-U61
[8]  
Hastie T, 2009, The elements of statistical learning: Data mining, inference, and prediction, DOI [10.1007/978-0-387-21606-5, DOI 10.1007/978-0-387-84858-7]
[9]   Functional linear discriminant analysis for irregularly sampled curves [J].
James, GM ;
Hastie, TJ .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2001, 63 :533-550
[10]   A CORRESPONDENCE BETWEEN BAYESIAN ESTIMATION ON STOCHASTIC PROCESSES AND SMOOTHING BY SPLINES [J].
KIMELDOR.GS ;
WAHBA, G .
ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (02) :495-&