Quiver Varieties and Branching

被引:33
作者
Nakajima, Hiraku [1 ]
机构
[1] Kyoto Univ, Dept Math, Math Sci Res Inst, Kyoto 6068502, Japan
关键词
quiver variety; geometric Satake correspondence; affine Lie algebra; intersection cohomology; KAC-MOODY ALGEBRAS; ALE SPACES; CRYSTAL BASES; LIE-ALGEBRAS; REPRESENTATIONS; DUALITY; SHEAVES; CONSTRUCTION; INSTANTONS; MODULI;
D O I
10.3842/SIGMA.2009.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Braverman and Finkelberg recently proposed the geometric Satake correspondence for the affine Kac-Moody group Gaff [Braverman A., Finkelberg M., arXiv:0711.2083]. They conjecture that intersection cohomology sheaves on the Uhlenbeck compactification of the framed moduli space of G(cpt)-instantons on R(4)/Z(r) correspond to weight spaces of representations of the Langlands dual group G(aff)(V) at level r. When G = SL(l), the Uhlenbeck compactification is the quiver variety of type sl(r)(aff), and their conjecture follows from the author's earlier result and I. Frenkel's level-rank duality. They further introduce a convolution diagram which conjecturally gives the tensor product multiplicity [Braverman A., Finkelberg M., Private communication, 2008]. In this paper, we develop the theory for the branching in quiver varieties and check this conjecture for G = SL(l).
引用
收藏
页数:37
相关论文
共 50 条
[31]   Quiver varieties and cluster algebras [J].
Nakajima, Hiraku .
KYOTO JOURNAL OF MATHEMATICS, 2011, 51 (01) :71-126
[32]   Quantized multiplicative quiver varieties [J].
Jordan, David .
ADVANCES IN MATHEMATICS, 2014, 250 :420-466
[33]   Arithmetic harmonic analysis on character and quiver Varieties II [J].
Hausel, Tamas ;
Letellier, Emmanuel ;
Rodriguez-Villegas, Fernando .
ADVANCES IN MATHEMATICS, 2013, 234 :85-128
[34]   Singular quiver varieties over extended dynkin quivers [J].
Helle, Gard Olav .
QUARTERLY JOURNAL OF MATHEMATICS, 2023, 74 (03) :911-938
[35]   HANDSAW QUIVER VARIETIES AND FINITE W-ALGEBRAS [J].
Nakajima, Hiraku .
MOSCOW MATHEMATICAL JOURNAL, 2012, 12 (03) :633-666
[36]   Generalized quiver varieties and triangulated categories [J].
Scherotzke, Sarah .
MATHEMATISCHE ZEITSCHRIFT, 2019, 292 (3-4) :1453-1478
[37]   Graded quiver varieties and derived categories [J].
Keller, Bernhard ;
Scherotzke, Sarah .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 713 :85-127
[38]   A categorical action on quantized quiver varieties [J].
Webster, Ben .
MATHEMATISCHE ZEITSCHRIFT, 2019, 292 (1-2) :611-639
[39]   TYPE A QUIVER LOCI AND SCHUBERT VARIETIES [J].
Kinser, Ryan ;
Rajchgot, Jenna .
JOURNAL OF COMMUTATIVE ALGEBRA, 2015, 7 (02) :265-301
[40]   Motivic Classes of Nakajima Quiver Varieties [J].
Wyss, Dimitri .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (22) :6961-6976