ON THE NUMBER OF ZEROS AND POLES OF DIRICHLET SERIES

被引:7
作者
Li, Bao Qin [1 ]
机构
[1] Florida Int Univ, Dept Math & Stat, Miami, FL 33199 USA
关键词
General Dirichlet series; meromorphic function; zero; pole; counting function; L-function; UNIQUENESS THEOREM;
D O I
10.1090/tran/7084
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates lower bounds on the number of zeros and poles of a general Dirichlet series in a disk of radius r and gives, as a consequence, an affirmative answer to an open problem of Bombieri and Perelli on the bound. Applications will also be given to Picard type theorems, global estimates on the symmetric difference of zeros, and uniqueness problems for Dirichlet series.
引用
收藏
页码:3865 / 3883
页数:19
相关论文
共 32 条
[1]  
[Anonymous], 1939, THEORY FUNCTIONS
[2]  
[Anonymous], 1986, THEORY RIEMANN ZETA
[3]  
[Anonymous], 1992, P AM C AN NUMB THEOR
[4]  
[Anonymous], 2007, LECT NOTES MATH
[5]  
Apostol T.M., 1990, Graduate Texts in Mathematics, V41
[6]  
Berenstein Carlos A., 1991, GRADUATE TEXTS MATH, V125, DOI 10.1007/978-1-4612- 3024-3. 1188, 1190
[7]  
BESICOVITCH A. S., 1955, ALMOST PERIODIC FUNC
[8]  
Bohr H., 1947, Almost periodic functions
[9]  
Bombieri E, 1998, ACTA ARITH, V83, P271
[10]  
Bombieri Enrico, 2001, MAT APPL, V12, P69