Three-dimensional porous reduced graphene oxide/PEDOT:PSS aerogel: Facile preparation and high performance for supercapacitor electrodes

被引:41
作者
Huang, Hui [1 ]
Xia, Lichen [1 ]
Zhao, Yongpeng [1 ,2 ]
Zhang, Hao [1 ]
Cong, Tianze [1 ]
Wang, Jianzhen [1 ]
Wen, Ningxuan [1 ]
Yang, Shuaitao [1 ]
Fan, Zeng [1 ]
Pan, Lujun [1 ]
机构
[1] Dalian Univ Technol, Sch Phys, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Sch Microelect, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Reduced graphene oxide; PEDOT:PSS; Aerogel; Hydrothermal treatment; Supercapacitors; ENERGY-STORAGE; CARBON MATERIALS; COMPOSITE FILMS; NITROGEN; CAPACITANCE; DESIGN; HYBRID; FIBERS;
D O I
10.1016/j.electacta.2020.137297
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Graphene derivatives have great potential in the field of energy storage, because of their high specific surface area, great electrical conductivity, and stable electrochemical properties. For the graphenebased electrodes with a three-dimensional (3D) porous structure, the interlayer stacking of the graphene sheets largely limits their capacitive performance, and thus hinders their wide applications. In this work, we successfully developed a lightweight, freestanding and 3D porous reduced graphene oxide (rGO)/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) composite aerogel by incorporating the conducting polymer PEDOT:PSS into interconnected rGO networks through a facile, low-cost and all-water-processable two-step synthesis route. PEDOT:PSS covering on the rGO sheets was found to not only prevent the stacking of rGO sheets, but also greatly improve the ion accessibility and mechanical stability of this highly porous spongy meshwork. Due to the synergistic effect of rGO and PEDOT:PSS, the aerogel electrodes delivered a high gravimetric specific capacitance (471 F g(-1) at 0.2 A g(-1)), an excellent rate capability, and a remarkable capacitance retention (98.71% over 20,000 cycles at 20 A g(-1)). Furthermore, the aerogel-based symmetric supercapacitor exhibited a wide potential window (0-1.4 V) and an excellent energy storage performance. A high energy density of 48.18 Wh kg(-1) with the power density of 1.4 kW kg(-1) at 0.5 A g(-1), or an energy density of 32.67 Wh kg(-1) corresponding to the great power density of 14,000 W kg(-1) at 5 A g(-1) was achieved. These results demonstrate the great potential of the rGO/PEDOT:PSS aerogel as an excellent electrode material for energy storage applications. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 58 条
[1]   A free-standing, flexible PEDOT:PSS film and its nanocomposites with graphene nanoplatelets as electrodes for quasi-solid-state supercapacitors [J].
Ahmed, Sultan ;
Rafat, M. ;
Singh, Manoj K. ;
Hashmi, S. A. .
NANOTECHNOLOGY, 2018, 29 (39)
[2]   Polarization-induced distortion of ions in the pores of carbon electrodes for electrochemical capacitors [J].
Ania, C. O. ;
Pernak, J. ;
Stefaniak, F. ;
Raymundo-Pinero, E. ;
Beguin, F. .
CARBON, 2009, 47 (14) :3158-3166
[3]   Synthesis of Nano-Flower Metal-Organic Framework/Graphene Composites As a High-Performance Electrode Material for Supercapacitors [J].
Azadfalah, Marziyeh ;
Sedghi, Arman ;
Hosseini, Hadi .
JOURNAL OF ELECTRONIC MATERIALS, 2019, 48 (11) :7011-7024
[4]   Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors [J].
Beidaghi, Majid ;
Gogotsi, Yury .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (03) :867-884
[5]   Highly Stable Transparent Conductive Silver Grid/PEDOT:PSS Electrodes for Integrated Bifunctional Flexible Electrochromic Supercapacitors [J].
Cai, Guofa ;
Darmawan, Peter ;
Cui, Mengqi ;
Wang, Jiangxin ;
Chen, Jingwei ;
Magdassi, Shlomo ;
Lee, Pooi See .
ADVANCED ENERGY MATERIALS, 2016, 6 (04)
[6]   Free-standing PEDOT:PSS/CNT aerogels and their electrochemical performance [J].
Cheng, H. ;
Medina, L. ;
Duong, H. M. .
MATERIALS TECHNOLOGY, 2017, 32 (10) :622-629
[7]  
Chmiola J, 2006, SCIENCE, V313, P1760, DOI 10.1126/science/1132195
[8]   A high-performance supercapacitor electrode based on N-doped porous graphene [J].
Dai, Shuge ;
Liu, Zhen ;
Zhao, Bote ;
Zeng, Jianhuang ;
Hu, Hao ;
Zhang, Qiaobao ;
Chen, Dongchang ;
Qu, Chong ;
Dang, Dai ;
Liu, Meilin .
JOURNAL OF POWER SOURCES, 2018, 387 :43-48
[9]   Carbon Nanotube-Bridged Graphene 3D Building Blocks for Ultrafast Compact Supercapacitors [J].
Duy Tho Pham ;
Lee, Tae Hoon ;
Luong, Dinh Hoa ;
Yao, Fei ;
Ghosh, Arunabha ;
Viet Thong Le ;
Kim, Tae Hyung ;
Li, Bing ;
Chang, Jian ;
Lee, Young Hee .
ACS NANO, 2015, 9 (02) :2018-2027
[10]  
Fan Z, 2017, INT SYM WIRELESS COM, P1, DOI 10.1109/ISWCS.2017.8108090