ASYMPTOTIC NORMALITY AND EFFICIENCY OF TWO SOBOL INDEX ESTIMATORS

被引:145
作者
Janon, Alexandre [1 ]
Klein, Thierry [2 ]
Lagnoux, Agnes [2 ]
Nodet, Maelle [1 ]
Prieur, Clementine [1 ]
机构
[1] Univ Grenoble 1, Lab Jean Kuntzmann, INRIA MOISE, F-38041 Grenoble 9, France
[2] Univ Toulouse 3, Inst Math, Lab Stat & Probabilites, F-31062 Toulouse 9, France
关键词
Sensitivity analysis; sobol indices; asymptotic efficiency; asymptotic normality; confidence intervals; metamodelling; surface response methodology; GLOBAL SENSITIVITY-ANALYSIS; MODELS;
D O I
10.1051/ps/2013040
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Many mathematical models involve input parameters, which are not precisely known. Global sensitivity analysis aims to identify the parameters whose uncertainty has the largest impact on the variability of a quantity of interest (output of the model). One of the statistical tools used to quantify the influence of each input variable on the output is the Sobol sensitivity index. We consider the statistical estimation of this index from a finite sample of model outputs: we present two estimators and state a central limit theorem for each. We show that one of these estimators has an optimal asymptotic variance. We also generalize our results to the case where the true output is not observable, and is replaced by a noisy version.
引用
收藏
页码:342 / 364
页数:23
相关论文
共 31 条
[1]  
[Anonymous], 2011, R: A Language and Environment for Statistical Computing
[2]  
Box GEP, 1987, Empirical model-building and response surfaces
[3]  
Carnell R., 2009, R PACKAGE VERSION 0
[4]  
Chen W., 2005, TRANSACTIONS AMERICA, V127
[5]   NON-LINEAR SENSITIVITY ANALYSIS OF MULTI-PARAMETER MODEL SYSTEMS [J].
CUKIER, RI ;
LEVINE, HB ;
SHULER, KE .
JOURNAL OF COMPUTATIONAL PHYSICS, 1978, 26 (01) :1-42
[6]  
Cuong NguyenNgoc., 2005, Handbook of Materials Modeling, P1529
[7]   Efficient estimation of sensitivity indices [J].
Da Veiga, Sebastien ;
Gamboa, Fabrice .
JOURNAL OF NONPARAMETRIC STATISTICS, 2013, 25 (03) :573-595
[8]  
Hayfield T., 2008, J STATIST SOFTW, V27
[9]   Survey of sampling-based methods for uncertainty and sensitivity analysis [J].
Helton, J. C. ;
Johnson, J. D. ;
Sallaberry, C. J. ;
Storlie, C. B. .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2006, 91 (10-11) :1175-1209
[10]   Importance measures in global sensitivity analysis of nonlinear models [J].
Homma, T ;
Saltelli, A .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 1996, 52 (01) :1-17