In vitro models of the blood-brain barrier: building in physiological complexity

被引:24
作者
Katt, Moriah E. [1 ]
Shusta, Eric V. [1 ,2 ]
机构
[1] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Neurol Surg, Madison, WI 53792 USA
关键词
A-CHIP SYSTEMS; ENDOTHELIAL-CELLS; MICROFLUIDIC MODEL; DRUG PERMEABILITY; TRANSPORT; ASTROCYTES; PERICYTES;
D O I
10.1016/j.coche.2020.07.002
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Development of brain therapeutics is significantly hampered by the presence of the blood-brain barrier (BBB). Classical transwell models are able to recapitulate many important aspects of drug transport across the BBB, but are not completely predictive of in vivo brain uptake. Species differences further complicate translation of experimental therapeutics from the benchtop to the clinic. Human BBB models offer some solutions to this problem. By increasing device complexity in terms of multicellularity, flow, and physical architecture, physiological models of the BBB have been developed that can more faithfully model different aspects of BBB transport and homeostasis . Using these models, it may be possible to improve the predictive capacity in benchmarking candidate therapeutics, and to identify new druggable targets by studying multicellular interactions.
引用
收藏
页码:42 / 52
页数:11
相关论文
共 51 条
[1]   Structure and function of the blood-brain barrier [J].
Abbott, N. Joan ;
Patabendige, Adjanie A. K. ;
Dolman, Diana E. M. ;
Yusof, Siti R. ;
Begley, David J. .
NEUROBIOLOGY OF DISEASE, 2010, 37 (01) :13-25
[2]   A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as a blood-brain barrier [J].
Adriani, Giulia ;
Ma, Dongliang ;
Pavesi, Andrea ;
Kamm, Roger D. ;
Goh, Eyleen L. K. .
LAB ON A CHIP, 2017, 17 (03) :448-459
[3]   Microengineered human blood-brain barrier platform for understanding nanoparticle transport mechanisms [J].
Ahn, Song Ih ;
Sei, Yoshitaka J. ;
Park, Hyun-Ji ;
Kim, Jinhwan ;
Ryu, Yujung ;
Choi, Jeongmoon J. ;
Sung, Hak-Joon ;
MacDonald, Tobey J. ;
Levey, Allan, I ;
Kim, YongTae .
NATURE COMMUNICATIONS, 2020, 11 (01)
[4]  
Bang S, 2017, SCI REP, V7, P1
[5]   Overlooked? Underestimated? Effects of Substrate Curvature on Cell Behavior [J].
Baptista, Danielle ;
Teixeira, Liliana ;
van Blitterswijk, Clemens ;
Giselbrecht, Stefan ;
Truckenmuller, Roman .
TRENDS IN BIOTECHNOLOGY, 2019, 37 (08) :838-854
[6]  
Bonakdar M, 2017, RSC ADV, V7, P42811, DOI [10.1039/c7ra07603g, 10.1039/C7RA07603G]
[7]   A microfluidic model of human brain (μHuB) for assessment of blood brain barrier [J].
Brown, Tyler D. ;
Nowak, Maksymilian ;
Bayles, Alexandra, V ;
Prabhakarpandian, Balabhaskar ;
Karande, Pankaj ;
Lahann, Joerg ;
Helgeson, Matthew E. ;
Mitragotri, Samir .
BIOENGINEERING & TRANSLATIONAL MEDICINE, 2019, 4 (02)
[8]   Engineering of human brain organoids with a functional vascular-like system [J].
Cakir, Bilal ;
Xiang, Yangfei ;
Tanaka, Yoshiaki ;
Kural, Mehmet H. ;
Parent, Maxime ;
Kang, Young-Jin ;
Chapeton, Kayley ;
Patterson, Benjamin ;
Yuan, Yifan ;
He, Chang-Shun ;
Raredon, Micha Sam B. ;
Dengelegi, Jake ;
Kim, Kun-Yong ;
Sun, Pingnan ;
Zhong, Mei ;
Lee, Sangho ;
Patra, Prabir ;
Hyder, Fahmeed ;
Niklason, Laura E. ;
Lee, Sang-Hun ;
Yoon, Young-Sup ;
Park, In-Hyun .
NATURE METHODS, 2019, 16 (11) :1169-+
[9]   3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes [J].
Campisi, Marco ;
Shin, Yoojin ;
Osaki, Tatsuya ;
Hajal, Cynthia ;
Chiono, Valeria ;
Kamm, Roger D. .
BIOMATERIALS, 2018, 180 :117-129
[10]   The role of shear stress in Blood-Brain Barrier endothelial physiology [J].
Cucullo, Luca ;
Hossain, Mohammed ;
Puvenna, Vikram ;
Marchi, Nicola ;
Janigro, Damir .
BMC NEUROSCIENCE, 2011, 12