Fe2O3 Nanostructures on Carbon Fabric as Anode Material for High Performance Asymmetric Supercapacitors

被引:8
作者
Wang, Bo [1 ]
Liu, Qi [1 ]
Lu, Yiyun [1 ]
Huang, Liang [2 ,3 ]
机构
[1] Luoyang Inst Sci & Technol, Dept Elect Engn & Automat, Luoyang 471023, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
关键词
Supercapacitors; Asymmetric; Fe2O3; MnO2; SOLID-STATE SUPERCAPACITORS; ELECTROLESS DEPOSITION; IRON-OXIDE; FLEXIBLE SUPERCAPACITORS; NEGATIVE ELECTRODES; MNO2; NANOWIRES; NANOSCALE MNO2; ENERGY; NANORODS; STORAGE;
D O I
10.1166/sam.2015.2578
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Supercapacitors (SCs) with asymmetric electrodes structure provide an effective approach to improve the energy density of SCs. We reported a novel anode material based on Fe2O3 nanoflakes grown on carbon fabric which exhibited a high specific capacitance of similar to 386 F/g. To fabricate asymmetric supercapacitors (ASCs), Fe2O3 nanoflakes negative electrodes and MnO2 positive electrodes were assembled together with a separator sandwiched between them. The fabricated ASCs showed a stable performance over a wide voltage range (0-1.6 V) and a high specific capacitance (510 F/g) with high areal capacitance (210 mF/cm(2)). At the meanwhile, a high energy density of 45.3 Wh/kg could be achieved. The fabricated ASCs demonstrated their great potential in energy storage for next-generation hybrid electrical vehicles and other consumer electronics.
引用
收藏
页码:2596 / 2602
页数:7
相关论文
共 52 条
[21]   WO3-x@Au@MnO2 Core-Shell Nanowires on Carbon Fabric for High-Performance Flexible Supercapacitors [J].
Lu, Xihong ;
Zhai, Teng ;
Zhang, Xianghui ;
Shen, Yongqi ;
Yuan, Longyan ;
Hu, Bin ;
Gong, Li ;
Chen, Jian ;
Gao, Yihua ;
Zhou, Jun ;
Tong, Yexiang ;
Wang, Zhong Lin .
ADVANCED MATERIALS, 2012, 24 (07) :938-+
[22]  
Pech D, 2010, NAT NANOTECHNOL, V5, P651, DOI [10.1038/NNANO.2010.162, 10.1038/nnano.2010.162]
[23]   V2O5•0.6H2O nanoribbons as cathode material for asymmetric supercapacitor in K2SO4 solution [J].
Qu, Q. T. ;
Shi, Y. ;
Li, L. L. ;
Guo, W. L. ;
Wu, Y. P. ;
Zhang, H. P. ;
Guan, S. Y. ;
Holze, R. .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (06) :1325-1328
[24]   CONDUCTING POLYMERS AS ACTIVE MATERIALS IN ELECTROCHEMICAL CAPACITORS [J].
RUDGE, A ;
DAVEY, J ;
RAISTRICK, I ;
GOTTESFELD, S ;
FERRARIS, JP .
JOURNAL OF POWER SOURCES, 1994, 47 (1-2) :89-107
[25]   Electroless Deposition of Conformal Nanoscale Iron Oxide on Carbon Nanoarchitectures for Electrochemical Charge Storage [J].
Sassin, Megan B. ;
Mansour, Azzam N. ;
Pettigrew, Katherine A. ;
Rolison, Debra R. ;
Long, Jeffrey W. .
ACS NANO, 2010, 4 (08) :4505-4514
[26]   Materials for electrochemical capacitors [J].
Simon, Patrice ;
Gogotsi, Yury .
NATURE MATERIALS, 2008, 7 (11) :845-854
[27]   Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors [J].
Taberna, PL ;
Simon, P ;
Fauvarque, JF .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (03) :A292-A300
[28]   Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor [J].
Toupin, M ;
Brousse, T ;
Bélanger, D .
CHEMISTRY OF MATERIALS, 2004, 16 (16) :3184-3190
[29]   3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage [J].
Wang, Da-Wei ;
Li, Feng ;
Liu, Min ;
Lu, Gao Qing ;
Cheng, Hui-Ming .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (02) :373-376
[30]   Nanostructured Iron Oxide Films Prepared by Electrochemical Method for Electrochemical Capacitors [J].
Wu, Mao-Sung ;
Lee, Rung-Hau ;
Jow, Jiin-Jiang ;
Yang, Wein-Duo ;
Hsieh, Ching-Yuan ;
Weng, Biing-Jyh .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2009, 12 (01) :A1-A4