COMPARATIVE STUDY ON COMPRESSIVE | STRENGTH OF FIBRE-REINFORCED CONCRETE MADE WITH INDUSTRIAL HYBRID FIBRE AND NATURAL WASTE FIBRE

被引:0
|
作者
Sani, Mohd Syahrul Hisyam Mohd [1 ]
Muftah, Fadhluhartini [1 ]
Muda, Mohd Fakri [1 ]
Ho, Lanh Si [2 ,3 ]
机构
[1] Univ Teknol MARA UiTM Cawangan Pahang, Coll Engn, Sch Civil Engn, Bandar Jengka 26400, Pahang, Malaysia
[2] Univ Transport Technol, 54 Trieu Khuc, Hanoi 100000, Vietnam
[3] Hiroshima Univ, Grad Sch Adv Sci & Engn, Civil & Environm Engn Program, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima 739527, Japan
来源
JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY | 2022年 / 17卷 / 06期
关键词
Compressive strength; Fibre-reinforced concrete; Industrial hybrid; fibre; Natural waste fibre; CHALLENGES; STRATEGIES; MANAGEMENT;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fibre-reinforced concrete (FRC) is a concrete consisting of normal concrete ingredients and fibre as additional material, such as natural fibre, industrial fibre, and synthetic fibre. The purpose of adding fibre in concrete is to enhance mechanical properties, concrete performance, structural integrity, and control cracking. The failure of normal concrete and the dumping of large and unmanageable waste such as solid waste from residential or industrial are worrying and cause various problems to the environment. The increase in the cost of raw materials, such as steel-reinforced bars has caused a large transition from reinforced concrete to fibre-reinforced concrete. From all these problems, FRC with waste hybrid steel fibre (WHSF) from the steel industry and sugarcane bagasse fibre (SBF) from the agriculture industry which is categorised as natural fibre is studied to obtain information and data on strength of different types of fibre. The main objective of the study is to determine the compressive strength of FRC with WHSF and SBF, and then compare them to obtain the best fibre for use in FRC with appropriate compressive strength. WHSF and SBF are collected and put through a certain process before being added to the FRC. Then, the FRC underwent a workability test of fresh FRC condition and a water absorption test and a compressive strength test of hardened FRC. The workability of FRC decreased when the WHSF or SBF is added. The compressive strength of FRC decreased with increasing WHSF except for 0.2% of WHSF and 0.5% of SBF. The percentage of compressive strength of FRC increased by approximately 6.58% for 0.2% of WHSF and 4.33% for 0.5% of SBF. From the comparative study of compressive strength, FRC with WHSF is more suitable to be utilised as an additional fibre when compared with FRC with SBF at 28 days but both have similar suitability at an early age, i. e., seven days. Finally, the compressive strength of FRC depends on the shape, volume and condition of fibre.
引用
收藏
页码:3815 / 3833
页数:19
相关论文
共 50 条
  • [21] Experimental Investigations on Basalt Fibre-Reinforced Concrete
    Kirthika S.K.
    Singh S.K.
    Journal of The Institution of Engineers (India): Series A, 2018, 99 (4) : 661 - 670
  • [22] Characterisation proposal of direct shear strength of steel fibre-reinforced concrete
    Nzambi, Aaron Kadima Lukanu Lwa
    de Oliveira, Denio Ramam Carvalho
    Melo, Vander Luiz da Silva
    Barreira, Ronnan Wembles Martins
    Moraes, Heber Dioney Sousa
    MAGAZINE OF CONCRETE RESEARCH, 2024, 76 (20) : 1150 - 1164
  • [23] Strength of hollow circular steel sections filled with fibre-reinforced concrete
    Campione, G
    Mindess, S
    Scibilia, N
    Zingone, G
    CANADIAN JOURNAL OF CIVIL ENGINEERING, 2000, 27 (02) : 364 - 372
  • [24] Impact resistance of concrete and fibre-reinforced concrete: A review
    Esaker, Mohamed
    Thermou, Georgia E.
    Neves, Luis
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2023, 180
  • [25] Strength characteristics of fibre-reinforced concrete containing nano-silica
    Adetukasi, A. O.
    Fadugba, O. G.
    Adebakin, I. H.
    Omokungbe, O.
    MATERIALS TODAY-PROCEEDINGS, 2021, 38 : 584 - 589
  • [26] Analytical calculation of the in-plane shear strength of fibre-reinforced concrete
    Valente, Rui
    ENGINEERING STRUCTURES, 2024, 315
  • [27] Compressive strength and failure behaviour of fibre reinforced concrete at elevated temperatures
    Shaikh, F. U. A.
    Taweel, M.
    ADVANCES IN CONCRETE CONSTRUCTION, 2015, 3 (04) : 283 - 293
  • [28] INVESTIGATION ON THE STRENGTH AND FLEXURAL TOUGHNESS OF HYBRID FIBRE REINFORCED CONCRETE
    Singh, Surinder Pal
    BRITTLE MATRIX COMPOSITES 9, 2009, : 91 - 100
  • [29] Specimen size effect on compressive and flexural strength of high-strength fibre-reinforced concrete containing coarse aggregate
    Fladr, Josef
    Bily, Petr
    COMPOSITES PART B-ENGINEERING, 2018, 138 : 77 - 86
  • [30] Sensitivity of various fibre features on shear capacities of ultra-high-performance fibre-reinforced concrete
    Tran, Ngoc Thanh
    Nguyen, Duy Liem
    Kim, Dong Joo
    Ngo, Tri Thuong
    MAGAZINE OF CONCRETE RESEARCH, 2022, 74 (04) : 190 - 206