Asymptotic Theory of l1-Regularized PDE Identification from a Single Noisy Trajectory

被引:4
作者
He, Yuchen [1 ]
Suh, Namjoon [2 ]
Huo, Xiaoming [2 ]
Kang, Sung Ha [3 ]
Mei, Yajun [2 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Nat Sci, Shanghai, Peoples R China
[2] Georgia Inst Technol, Sch Ind & Syst Engn, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
parital differential equation (PDE); lasso; pseudo least square; signed-support recovery; primal-dual witness construction; local-polynomial regression; STRONG UNIFORM CONSISTENCY; UNCERTAINTY PRINCIPLES; VARIABLE SELECTION; REGRESSION; RECOVERY; REPRESENTATIONS; EQUATIONS; MODELS; RATES; WEAK;
D O I
10.1137/21M1398884
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a formal theoretical analysis on the PDE identification via the '1-regularized pseudo least square method from the statistical point of view. In this article, we assume that the differential equation governing the dynamic system can be represented as a linear combination of various linear and nonlinear differential terms. Under noisy observations, we employ local-polynomial fitting for estimating state variables and apply the '1 penalty for model selection. Our theory proves that the classical mutual incoherence condition on the feature matrix F and the beta* min-condition for the ground-truth signal beta* are sufficient for the signed-support recovery of the '1-PsLS method. We run numerical experiments on two popular PDE models, the viscous Burgers and the Korteweg-de Vries (KdV) equations, and the results from the experiments corroborate our theoretical predictions.
引用
收藏
页码:1012 / 1036
页数:25
相关论文
共 45 条
[41]   L1-Regularized Neural Ranking for Risk Stratification and Its Application to Prediction of Time to Distant Metastasis in Luminal Node Negative Chemotherapy Naive Breast Cancer Patients [J].
Minhas, Fayyaz ;
Toss, Michael S. ;
ul Wahab, Noor ;
Rakha, Emad ;
Rajpoot, Nasir M. .
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, PT II, 2021, 1525 :390-400
[42]   PREDICTING TEMPORAL LOBE VOLUME ON MRI FROM GENOTYPES USING L1-L2 REGULARIZED REGRESSION [J].
Kohannim, Omid ;
Hibar, Derrek ;
Jahanshad, Neda ;
Stein, Jason ;
Hua, Xue ;
Toga, Arthur W. ;
Jack, Clifford R., Jr. ;
Weiner, Michael W. ;
Thompson, Paul M. .
2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, :1160-1163
[43]   OPTIMAL ESTIMATION OF l1-REGULARIZATION PRIOR FROM A REGULARIZED EMPIRICAL BAYESIAN RISK STANDPOINT [J].
Huang, Hui ;
Haber, Eldad ;
Horesh, Lior .
INVERSE PROBLEMS AND IMAGING, 2012, 6 (03) :447-464
[44]   A PRECISE HIGH-DIMENSIONAL ASYMPTOTIC THEORY FOR BOOSTING AND MINIMUM-l1-NORM INTERPOLATED CLASSIFIERS [J].
Liang, Tengyuan ;
Sur, Pragya .
ANNALS OF STATISTICS, 2022, 50 (03) :1669-1695
[45]   Identification of a Selective PDE4B Inhibitor From Bryophyllum pinnatum by Target Fishing Study and In Vitro Evaluation of Quercetin 3-O-α-L-Arabinopyranosyl-(1→2)-O-α-L-Rhamnopyranoside [J].
Lourenco, Estela M. G. ;
Fernandes, Julia M. ;
Carvalho, Vinicius de F. ;
Grougnet, Raphael ;
Martins, Marco A. ;
Jordao, Alessandro K. ;
Zucolotto, Silvana M. ;
Barbosa, Euzebio G. .
FRONTIERS IN PHARMACOLOGY, 2020, 10