Object Detection Method for High Resolution Remote Sensing Imagery Based on Convolutional Neural Networks with Optimal Object Anchor Scales

被引:5
作者
Dong, Zhipeng [1 ]
Liu, Yanxiong [1 ,2 ]
Feng, Yikai [1 ,2 ]
Wang, Yanli [3 ]
Xu, Wenxue [1 ,2 ]
Chen, Yilan [1 ,2 ]
Tang, Qiuhua [1 ,2 ]
机构
[1] Minist Nat Resources, Inst Oceanog 1, Qingdao, Peoples R China
[2] Minist Nat Resources, Key Lab Ocean Geomat, Qingdao, Peoples R China
[3] Shandong Univ Sci & Technol, Coll Geodesy & Geomat, Qingdao, Peoples R China
基金
中国国家自然科学基金;
关键词
high spatial resolution remote sensing image; object detection; convolutional neural networks; optimal object anchor scales; deep learning; ATTENTION; FEATURES; EARTH;
D O I
10.1080/01431161.2022.2066487
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Object detection is a key technique for automatic information extraction, analysis and understanding of high spatial resolution remote-sensing images (HSRIs). Object anchor scales are a critical factor for object detection of HSRIs based on convolutional neural networks (CNNs). With respect to adaptively obtaining optimal object anchor scales for object detection of HSRIs, this paper proposes a novel object detection method for HSRIs based on CNNs with optimal object anchor scales. First, optimal object anchor scales for object detection of HSRIs are obtained using an adaptive object-scale learning operator. Then, a CNN object detection framework for HSRIs is designed based on optimal object anchor scales. Using multiple-object detection datasets, the proposed method is compared with some state-of-the-art object detection algorithms. Experimental results show that the proposed method can achieve 90.42%, 91.98% and 85.07% mAP on WHU-RSONE, UCAS-AOD and HSRC2016, respectively, and outperforms state-of-the-art object detection algorithms.
引用
收藏
页码:2698 / 2719
页数:22
相关论文
共 50 条
[1]  
Chen Y., 2022, IEEE GEOSCI REMOTE S, V19
[2]   Thick Clouds Removing From Multitemporal Landsat Images Using Spatiotemporal Neural Networks [J].
Chen, Yang ;
Weng, Qihao ;
Tang, Luliang ;
Zhang, Xia ;
Bilal, Muhammad ;
Li, Qingquan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[3]   Automatic mapping of urban green spaces using a geospatial neural network [J].
Chen, Yang ;
Weng, Qihao ;
Tang, Luliang ;
Liu, Qinhuo ;
Zhang, Xia ;
Bilal, Muhammad .
GISCIENCE & REMOTE SENSING, 2021, 58 (04) :624-642
[4]   End-to-End Airplane Detection Using Transfer Learning in Remote Sensing Images [J].
Chen, Zhong ;
Zhang, Ting ;
Ouyang, Chao .
REMOTE SENSING, 2018, 10 (01)
[5]   A survey on object detection in optical remote sensing images [J].
Cheng, Gong ;
Han, Junwei .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2016, 117 :11-28
[6]   Object detection in remote sensing imagery using a discriminatively trained mixture model [J].
Cheng, Gong ;
Han, Junwei ;
Guo, Lei ;
Qian, Xiaoliang ;
Zhou, Peicheng ;
Yao, Xiwen ;
Hu, Xintao .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2013, 85 :32-43
[7]  
Dai JF, 2016, ADV NEUR IN, V29
[8]   Multi-scale object detection in remote sensing imagery with convolutional neural networks [J].
Deng, Zhipeng ;
Sun, Hao ;
Zhou, Shilin ;
Zhao, Juanping ;
Lei, Lin ;
Zou, Huanxin .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 145 :3-22
[9]   Efficient Saliency-Based Object Detection in Remote Sensing Images Using Deep Belief Networks [J].
Diao, Wenhui ;
Sun, Xian ;
Zheng, Xinwei ;
Dou, Fangzheng ;
Wang, Hongqi ;
Fu, Kun .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (02) :137-141
[10]   Object Detection in High Resolution Remote Sensing Imagery Based on Convolutional Neural Networks With Suitable Object Scale Features [J].
Dong, Zhipeng ;
Wang, Mi ;
Wang, Yanli ;
Zhu, Ying ;
Zhang, Zhiqi .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (03) :2104-2114