DETERMINISTIC FULLY DYNAMIC DATA STRUCTURES FOR VERTEX COVER AND MATCHING

被引:30
作者
Bhattacharya, Sayan [1 ,2 ]
Henzinger, Monika [1 ]
Italiano, Giuseppe F. [3 ]
机构
[1] Univ Vienna, Fac Comp Sci, Vienna, Austria
[2] Univ Warwick, Coventry, W Midlands, England
[3] Univ Roma Tor Vergata, Rome, Italy
基金
欧洲研究理事会;
关键词
fully dynamic algorithms; minimum vertex conver; maximum matching; dynamic data structures; primal-dual method; ALGORITHMS;
D O I
10.1137/140998925
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present the first deterministic data structures for maintaining approximate minimum vertex cover and maximum matching in a fully dynamic graph G = (V, E), with vertical bar V vertical bar = n and vertical bar E vertical bar = m, in o(root m) time per update. In particular, for minimum vertex cover, we provide deterministic data structures for maintaining a (2+epsilon) approximation in O(log n/epsilon(2)) amortized time per update. For maximum matching, we show how to maintain a (3+epsilon) approximation in O(min(root n/epsilon m(1/3)/epsilon(2)) amortized time per update and a (4 + epsilon) approximation in O(m1/3/epsilon(2)) worst-case time per update. Our data structure for fully dynamic minimum vertex cover is essentially near-optimal and settles an open problem by Onak and Rubinfeld [in 42nd ACM Symposium on Theory of Computing, Cambridge, MA, ACM, 2010, pp. 457-464].
引用
收藏
页码:859 / 887
页数:29
相关论文
共 23 条
[1]   Popular conjectures imply strong lower bounds for dynamic problems [J].
Abboud, Amir ;
Williams, Virginia Vassilevska .
2014 55TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2014), 2014, :434-443
[2]  
[Anonymous], 2016, P 27 ANN ACM SIAM S, DOI DOI 10.1137/1.9781611974331.CH50
[3]   Fully dynamic maximal matching in O(log n) update time [J].
Baswana, Surender ;
Gupta, Manoj ;
Sen, Sandeep .
2011 IEEE 52ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2011), 2011, :383-392
[4]   Fully Dynamic Matching in Bipartite Graphs [J].
Bernstein, Aaron ;
Stein, Cliff .
AUTOMATA, LANGUAGES, AND PROGRAMMING, PT I, 2015, 9134 :167-179
[5]  
Bhattacharya S, 2017, PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P470
[6]   New Deterministic Approximation Algorithms for Fully Dynamic Matching [J].
Bhattacharya, Sayan ;
Henzinger, Monika ;
Nanongkai, Danupon .
STOC'16: PROCEEDINGS OF THE 48TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2016, :398-411
[7]   Deterministic Fully Dynamic Approximate Vertex Cover and Fractional Matching in O(1) Amortized Update Time [J].
Bhattacharya, Sayan ;
Chakrabarty, Deeparnab ;
Henzinger, Monika .
INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2017, 2017, 10328 :86-98
[8]   Linear-Time Approximation for Maximum Weight Matching [J].
Duan, Ran ;
Pettie, Seth .
JOURNAL OF THE ACM, 2014, 61 (01)
[9]   Approximating Maximum Weight Matching in Near-linear Time [J].
Duan, Ran ;
Pettie, Seth .
2010 IEEE 51ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2010, :673-682
[10]  
GABOW HN, 1991, J ACM, V38, P815, DOI 10.1145/115234.115366