Anti-periodic solutions for a class of nonlinear nth-order differential equations with delays

被引:35
作者
Fan, Qiyi [3 ]
Wang, Wentao [2 ]
Yi, Xuejun [1 ]
机构
[1] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
[2] Jiaxing Univ, Coll Math & Informat Engn, Jiaxing 314001, Zhejiang, Peoples R China
[3] Hunan Univ Arts & Sci, Dept Math, Changde 415000, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
nth-order differential equations; Delays; Anti-periodic solution; Existence and uniqueness; Leray-Schauder degree; PERIODIC-SOLUTIONS; DEVIATING ARGUMENT; RAYLEIGH EQUATION; EXISTENCE; INTERPOLATION; KIND;
D O I
10.1016/j.cam.2009.01.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
in this paper, we use the Leray-Schauder degree theory to establish new results on the existence and uniqueness of anti-periodic solutions for a class of nonlinear nth-order differential equations with delays of the form x((n)) (t) + f (t, x((n-1)) (t)) + g (t, x(t - tau (t))) = e(t). (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:762 / 769
页数:8
相关论文
共 25 条
[1]   ON A CLASS OF 2ND-ORDER ANTIPERIODIC BOUNDARY-VALUE-PROBLEMS [J].
AFTABIZADEH, AR ;
AIZICOVICI, S ;
PAVEL, NH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 171 (02) :301-320
[2]   Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities [J].
Aizicovici, S ;
McKibben, M ;
Reich, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 43 (02) :233-251
[3]  
Burton T. A., 1985, Stability and Periodic Solutions of Ordinary and Functional Differential Equations
[4]   Periodic solutions for higher-order neutral differential equations with several delays [J].
Cao, JD ;
He, GM .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (10-11) :1491-1503
[5]  
[陈太勇 Chen Taiyong], 2007, [数学研究, Journal of Mathematical Study], V40, P187
[6]   Anti-periodic solutions for fully nonlinear first-order differential equations [J].
Chen, Yuqing ;
Nieto, Juan J. ;
O'Regan, Donal .
MATHEMATICAL AND COMPUTER MODELLING, 2007, 46 (9-10) :1183-1190
[7]  
Cong FH, 1998, NONLINEAR ANAL-THEOR, V32, P787
[8]  
Cong FZ, 2000, J MATH ANAL APPL, V241, P1
[9]  
Deimling K., 1985, NONLINEAR FUNCTIONAL
[10]   Lacunary interpolation by antiperiodic trigonometric polynomials [J].
Delvos, FJ ;
Knoche, L .
BIT, 1999, 39 (03) :439-450