Pattern recognition applied to seismic signals of the Llaima volcano (Chile): An analysis of the events' features

被引:37
作者
Curilem, Millaray [1 ]
Vergara, Jorge
San Martin, Cesar [1 ]
Fuentealba, Gustavo [2 ]
Cardona, Carlos [3 ]
Huenupan, Fernando [1 ]
Chacon, Max [4 ]
Salman Khan, M. [5 ]
Hussein, Walid [5 ]
Becerra Yoma, Nestor [5 ]
机构
[1] Univ La Frontera, Dept Elect Engn, Temuco, Chile
[2] Univ La Frontera, Dept Phys, Temuco, Chile
[3] Observ Vulcanol Andes Sur, Rudecindo Ortega 03850, Temuco, Chile
[4] Univ Santiago Chile, Dept Informat Engn, Santiago, Chile
[5] Univ Chile, Dept Elect Engn, Santiago, Chile
关键词
Seismic discrimination; Volcano monitoring; Signal processing; Pattern recognition; Support vector machines; LONG-PERIOD EVENTS; AUTOMATIC CLASSIFICATION; NEURAL-NETWORKS; TREMOR DATA; AGREEMENT; ERUPTIONS; MODELS; ETNA;
D O I
10.1016/j.jvolgeores.2014.06.004
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper proposes a computer-based classifier to automatically identify four seismic event classes of the Llaima volcano, one of the most active volcanoes in the Southern Andes, situated in the Araucania Region of Chile. A combination of features that provided good recognition performance in our previous papers concerning the Llaima and Villarica (located 100 km south of Llaima) volcanoes is utilized in order to train the classifiers. These features are extracted from the amplitude, frequency and phase of the seismic signals. Unlike the previous works where fixed length windows were used to obtain the seismic signals, this paper employs signals of variable lengths that span the entire seismic event. The classifiers are implemented using support vector machines. A confidence analysis is also included to improve reliability of the classification. Results indicate that the features used for recognition of the events of Villarica volcano also provide good recognition results for the Llaima volcano, yielding classification exactitude of over 80%. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:134 / 147
页数:14
相关论文
共 41 条
[1]  
Altman DG, 1990, PRACTICAL STAT MED R, DOI DOI 10.1201/9780429258589
[2]   Discriminative Feature Selection for Automatic Classification of Volcano-Seismic Signals [J].
Alvarez, Isaac ;
Garcia, Luz ;
Cortes, Guillermo ;
Benitez, Carmen ;
De la Torre, Angel .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2012, 9 (02) :151-155
[3]   Adaptive blind signal processing - Neural network approaches [J].
Amari, SI ;
Cichocki, A .
PROCEEDINGS OF THE IEEE, 1998, 86 (10) :2026-2048
[4]  
[Anonymous], 1995, NATO ASI SERIES E
[5]  
[Anonymous], 2003, PRACTICAL GUIDE SUPP
[6]  
[Anonymous], 1977, DISCRETE TIME SIGNAL
[7]   Continuous Hidden Markov Models: Application to automatic earthquake detection and classification at Las Canadas caldera, Tenerife [J].
Beyreuther, Moritz ;
Carniel, Roberto ;
Wassermann, Joachim .
JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH, 2008, 176 (04) :513-518
[8]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167
[9]   Clustering and classification of infrasonic events at Mount Etna using pattern recognition techniques [J].
Cannata, A. ;
Montalto, P. ;
Aliotta, M. ;
Cassisi, C. ;
Pulvirenti, A. ;
Privitera, E. ;
Patane, D. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2011, 185 (01) :253-264
[10]   Monitoring Seismo-volcanic and Infrasonic Signals at Volcanoes: Mt. Etna Case Study [J].
Cannata, Andrea ;
Di Grazia, Giuseppe ;
Aliotta, Marco ;
Cassisi, Carmelo ;
Montalto, Placido ;
Patane, Domenico .
PURE AND APPLIED GEOPHYSICS, 2013, 170 (11) :1751-1771