Fourier Duality in Integral Geometry and Reconstruction from Ray Integrals

被引:0
|
作者
Palamodov, Victor [1 ]
机构
[1] Tel Aviv Univ, IL-69978 Tel Aviv, Israel
关键词
Ray transform; Completeness condition; Homogeneous distribution; Duality; Support theorem; CONE-BEAM RECONSTRUCTION; IMAGE-RECONSTRUCTION; RADON-TRANSFORM; PROJECTION; INVERSION;
D O I
10.1007/s00041-014-9340-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Analytic reconstruction of a function defined in an affine space from data of its integrals along lines or rays is in focus of the paper. Basic tools are the Fourier transform of homogeneous distributions and a self-duality equation in integral geometry. Three dimensional case is of special interest.
引用
收藏
页码:947 / 960
页数:14
相关论文
共 50 条
  • [31] From Hough Transform to integral geometry
    Becker, JM
    Grousson, S
    Coltuc, D
    IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 1444 - 1446
  • [32] IMAGE-RECONSTRUCTION FROM STRIP INTEGRALS IN COMPUTER-AIDED X-RAY TOMOGRAPHY
    VERLY, JG
    BRACEWELL, RN
    PHYSICS IN MEDICINE AND BIOLOGY, 1980, 25 (04): : 772 - 772
  • [33] From conformal blocks to path integrals in the Vaidya geometry
    Anous, Tarek
    Hartman, Thomas
    Rovai, Antonin
    Sonner, Julian
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (09):
  • [34] From conformal blocks to path integrals in the Vaidya geometry
    Tarek Anous
    Thomas Hartman
    Antonin Rovai
    Julian Sonner
    Journal of High Energy Physics, 2017
  • [35] INTEGRAL GEOMETRY WITH MATRIX WEIGHT AND ONE NONLINEAR PROBLEM OF MATRIX RECONSTRUCTION
    WERTHEIM, LB
    DOKLADY AKADEMII NAUK SSSR, 1991, 319 (03): : 531 - 534
  • [36] INTEGRAL GEOMETRY AND 3-DIMENSIONAL RECONSTRUCTION OF RANDOMLY ORIENTED IDENTICAL PARTICLES FROM THEIR ELECTRON MICROPHOTOS
    GONCHAROV, AB
    ACTA APPLICANDAE MATHEMATICAE, 1988, 11 (03) : 199 - 211
  • [37] On signal reconstruction from Fourier magnitude
    Michael, G
    Porat, M
    ICECS 2001: 8TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS, VOLS I-III, CONFERENCE PROCEEDINGS, 2001, : 1403 - 1406
  • [38] GENERALIZED STOCHASTIC INTEGRALS, STOCHASTIC INTEGRAL-EQUATIONS WITH MULTIDIMENSIONAL PARAMETER AND INFINITESIMAL GAUSSIAN GEOMETRY
    GAVEAU, B
    MOULINIER, JM
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1983, 296 (01): : 43 - 46
  • [39] On the multiple Fourier integrals of continuous functions from the Sobolev spaces
    Ravshan Ashurov
    Acta Scientiarum Mathematicarum, 2011, 77 (1-2): : 209 - 222
  • [40] On the multiple Fourier integrals of continuous functions from the Sobolev spaces
    Ashurov, Ravshan
    ACTA SCIENTIARUM MATHEMATICARUM, 2011, 77 (1-2): : 209 - 222