Ambiguity Function and Frame-Theoretic Properties of Periodic Zero-Autocorrelation Waveforms

被引:42
作者
Benedetto, John J. [1 ]
Donatelli, Jeffrey J. [1 ]
机构
[1] Univ Maryland, Dept Math, Norbert Wiener Ctr, College Pk, MD 20742 USA
关键词
Constant-amplitude zero-autocorrelation (CAZAC) waveforms; discrete periodic ambiguity function; frames;
D O I
10.1109/JSTSP.2007.897044
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Periodic constant-amplitude zero-autocorrelation (CAZAC) waveforms u are analyzed in terms of the discrete periodic ambiguity function A(u). Elementary number-theoretic considerations illustrate that peaks in A(u) are not stable under small perturbations in its domain. Further, it is proved that the analysis of vector-valued CAZAC waveforms depends on methods from the theory of frames. Finally, techniques are introduced to characterize the structure of A(u) to compute u in terms of A(u) and to evaluate MSE for CAZAC waveforms.
引用
收藏
页码:6 / 20
页数:15
相关论文
共 46 条
[1]  
[Anonymous], 1951, THESIS MIT CAMBRIDGE
[2]   Sigma-Delta (ΣΔ) quantization and finite frames [J].
Benedetto, JJ ;
Powell, AM ;
Yilmaz, Ö .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (05) :1990-2005
[3]   Finite normalized tight frames [J].
Benedetto, JJ ;
Fickus, M .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2003, 18 (2-4) :357-385
[4]  
BENEDETTO JJ, 2004, SOFTWARE PACKAGE MIL
[5]  
BJORCK G, 1990, NATO ADV SCI I C-MAT, V315, P131
[6]  
BJORCK G, 1995, CR ACAD SCI I-MATH, V320, P319
[7]  
BJORCK G, 1985, P A HAAR MEM C C MAT, V9, P193
[8]   Equal-norm tight frames with erasures [J].
Casazza, PG ;
Kovacevic, J .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2003, 18 (2-4) :387-430
[9]  
Christensen O., 2003, An Introduction to Frames and Riesz Bases, DOI [10.1007/978-0-8176-8224-8, DOI 10.1007/978-0-8176-8224-8]