On the numerical solution of the eigenvalue problem in fractional quantum mechanics

被引:11
作者
Guerrero, Alejandro [1 ]
Moreles, Miguel Angel [2 ]
机构
[1] CIMAT, Guanajuato 36240, Gto, Mexico
[2] Univ Calgary, Dept Chem & Petr Engn, Calgary, AB T2N 1N4, Canada
关键词
Fractional quantum mechanics; Fractional Laplacian; Control Volume method; Radial Basis Functions;
D O I
10.1016/j.cnsns.2014.06.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we propose a Control Volume Function Approximation (CVFA) method to solve equations involving the fractional Laplacian. The function approximation part is carried out with Radial Basis Function (RBF) interpolation. The physical application of interest is the eigenvalue problem for the time independent fractional Schrodinger equation. Fractional derivatives are considered in the Riesz potentials sense. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:604 / 613
页数:10
相关论文
共 15 条
[1]   Collocation method for fractional quantum mechanics [J].
Amore, Paolo ;
Fernandez, Francisco M. ;
Hofmann, Christoph P. ;
Saenz, Ricardo A. .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (12)
[2]  
[Anonymous], PHYS REV E
[3]  
[Anonymous], J MATH PHYS
[4]  
Helgason Sigurdur, 1999, The Radon transform
[5]   Nonlinear fractional Schrodinger equations in one dimension [J].
Ionescu, Alexandru D. ;
Pusateri, Fabio .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (01) :139-176
[6]   Eigenvalues of the fractional Laplace operator in the interval [J].
Kwasnicki, Mateusz .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (05) :2379-2402
[7]   Fractals and quantum mechanics [J].
Laskin, N .
CHAOS, 2000, 10 (04) :780-790
[8]   Fractional Schrodinger equation [J].
Laskin, N .
PHYSICAL REVIEW E, 2002, 66 (05) :7-056108
[9]   Fractional quantum mechanics and Levy path integrals [J].
Laskin, N .
PHYSICS LETTERS A, 2000, 268 (4-6) :298-305
[10]   Control volume function approximation methods and their applications to modeling porous media flow [J].
Li, BY ;
Chen, ZX ;
Huan, GR .
ADVANCES IN WATER RESOURCES, 2003, 26 (04) :435-444