An overview and prospective on Al and Al-ion battery technologies

被引:187
作者
Elia, Giuseppe Antonio [1 ,2 ]
Kravchyk, Kostiantyn V. [3 ,4 ]
Kovalenko, Maksym V. [3 ,4 ]
Chacon, Joaquin [5 ]
Holland, Alex [6 ]
Wills, Richard G. A. [6 ]
机构
[1] Helmholtz Inst Ulm HIU, Electrochem Energy Storage, Helmholtzstr 11, D-89081 Ulm, Germany
[2] Karlsruhe Inst Technol KIT, POB 3640, D-76021 Karlsruhe, Germany
[3] Swiss Fed Inst Technol, Dept Chem & Appl Biosci, Lab Inorgan Chem, Vladimir Prelog Weg 1, CH-8093 Zurich, Switzerland
[4] Empa Swiss Fed Labs Mat Sci & Technol, Lab Thin Films & Photovolta, Uberlandstr 129, CH-8600 Dubendorf, Switzerland
[5] Albufera Energy Storage, Madrid, Spain
[6] Univ Southampton, Fac Engn & Phys Sci, Energy Technol Res Grp, Southampton, Hants, England
关键词
Al batteries; Energy storage; Chloroaluminate melt; Intercalation; TIO2 NANOTUBE ARRAYS; RECHARGEABLE ALUMINUM BATTERY; NANOCRYSTALLINE ANATASE TIO2; HIGH-PERFORMANCE CATHODE; ELECTROCHEMICAL PROPERTIES; ANODE MATERIAL; LOW-COST; ELECTRODE MATERIALS; COMPOSITE CATHODE; AQUEOUS-SOLUTION;
D O I
10.1016/j.jpowsour.2020.228870
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aluminum batteries are considered compelling electrochemical energy storage systems because of the natural abundance of aluminum, the high charge storage capacity of aluminum of 2980 mA h g 1/8046 mA h cm(-3), and the sufficiently low redox potential of Al3+/Al. Several electrochemical storage technologies based on aluminum have been proposed so far. This review classifies the types of reported Al-batteries into two main groups: aqueous (Al-ion, and Al-air) and non-aqueous (aluminum graphite dual-ion, Al-organic dual-ion, Al-ion, and Al-sulfur). Specific focus is given to Al electrolyte chemistry based on chloroaluminate melts, deep eutectic solvents, polymers, and "chlorine-free" formulations.
引用
收藏
页数:22
相关论文
共 288 条
[1]   Aluminium electrodeposition under ambient conditions [J].
Abbott, Andrew P. ;
Harris, Robert C. ;
Hsieh, Yi-Ting ;
Ryder, Karl S. ;
Sun, I-Wen .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (28) :14675-14681
[2]   Do all ionic liquids need organic cations? Characterisation of [AlCl2•nAmide]+ AlCl4- and comparison with imidazolium based systems [J].
Abood, Hadi M. A. ;
Abbott, Andrew P. ;
Ballantyne, Andrew D. ;
Ryder, Karl S. .
CHEMICAL COMMUNICATIONS, 2011, 47 (12) :3523-3525
[3]   Electrical conductivity of cluster-assembled carbon/titania nanocomposite films irradiated by highly focused vacuum ultraviolet photon beams [J].
Amati, M. ;
Lenardi, C. ;
Agostino, R. G. ;
Caruso, T. ;
Ducati, C. ;
La Rosa, S. ;
Bongiorno, G. ;
Cassina, V. ;
Podesta, P. ;
Ravagnan, L. ;
Piseri, P. ;
Milani, P. .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (06)
[4]   Ionic Liquid Analogs of AlCl3 with Urea Derivatives as Electrolytes for Aluminum Batteries [J].
Angell, Michael ;
Zhu, Guanzhou ;
Lin, Meng-Chang ;
Rong, Youmin ;
Dai, Hongjie .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (04)
[5]   High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte [J].
Angell, Michael ;
Pan, Chun-Jern ;
Rong, Youmin ;
Yuan, Chunze ;
Lin, Meng-Chang ;
Hwang, Bing-Joe ;
Dai, Hongjie .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (05) :834-839
[6]  
[Anonymous], 2000, JOM
[7]  
[Anonymous], 2020, J ELECTROCHEM SOC
[8]  
[Anonymous], 2018, ANGEW CHEM, DOI DOI 10.1002/ANGE.201711328
[9]  
[Anonymous], 2012, EC ENERGY ROADMAP 20, DOI DOI 10.2833/10759
[10]   Prototype systems for rechargeable magnesium batteries [J].
Aurbach, D ;
Lu, Z ;
Schechter, A ;
Gofer, Y ;
Gizbar, H ;
Turgeman, R ;
Cohen, Y ;
Moshkovich, M ;
Levi, E .
NATURE, 2000, 407 (6805) :724-727