Dynamics of Bose-Einstein condensates: Variational solutions of the Gross-Pitaevskii equations

被引:338
作者
PerezGarcia, VM
Michinel, H
Cirac, JI
Lewenstein, M
Zoller, P
机构
[1] UNIV A CORUNA, NAVAL & OCEAN ESCUELA POLITECN SUPER, DEPT INGN MECAN, FERROL 15706, SPAIN
[2] UNIV INNSBRUCK, INST THEORET PHYS, A-6020 INNSBRUCK, AUSTRIA
[3] CTR ETUD SACLAY, SPAM, DRECAM, DSM, COMISSARIAT ENERGIE ATOM, F-91191 GIF SUR YVETTE, FRANCE
来源
PHYSICAL REVIEW A | 1997年 / 56卷 / 02期
关键词
D O I
10.1103/PhysRevA.56.1424
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A variational technique is applied to solve the time-dependent nonlinear Schrodinger equation (Gross-Pitaevskii equation) with the goal to model the dynamics of dilute ultracold atom clouds in the Bose-Einstein condensed phase. We derive analytical predictions for the collapse, equilibrium widths, and evolution laws of the condensate parameters and find them to be in very good agreement with our numerical simulations of the nonlinear Schrodinger equation. It is found that not only the number of particles, but also both the initial width of the condensate and the effect of different perturbations to the condensate may play a crucial role in the collapse dynamics. The results are applicable when the shape of the condensate is sufficiently simple.
引用
收藏
页码:1424 / 1432
页数:9
相关论文
共 46 条