Asymptotic finite-time ruin probability for a bidimensional renewal risk model with constant interest force and dependent subexponential claims

被引:43
作者
Yang, Haizhong [1 ]
Li, Jinzhu [2 ,3 ]
机构
[1] Northwestern Polytech Univ, Econ Res Ctr, Xian 710072, Peoples R China
[2] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Asymptotics; Bidimensional renewal risk model; Farlie-Gumbel-Morgenstern distribution; Ruin probability; Subexponentiality;
D O I
10.1016/j.insmatheco.2014.07.007
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper considers a bidimensional renewal risk model with constant interest force and dependent subexponential claims. Under the assumption that the claim,size vectors form a sequence of independent and identically distributed random vectors following a common bivariate Farlie-Gumbel-Morgenstern distribution, we derive for the finite-time ruin probability an explicit asymptotic formula. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:185 / 192
页数:8
相关论文
共 14 条
[1]   Uniform asymptotics for the finite-time ruin probabilities of two kinds of nonstandard bidimensional risk models [J].
Chen, Yang ;
Wang, Le ;
Wang, Yuebao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 401 (01) :114-129
[2]   Asymptotic Results for Ruin Probability of a Two-Dimensional Renewal Risk Model [J].
Chen, Yang ;
Wang, Yuebao ;
Wang, Kaiyong .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2013, 31 (01) :80-91
[3]   Asymptotics for the ruin probabilities of a two-dimensional renewal risk model with heavy-tailed claims [J].
Chen, Yiqing ;
Yuen, Kam C. ;
Ng, Kai W. .
APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2011, 27 (03) :290-300
[4]  
Embrechts P., 2008, Modelling Extremal Events
[5]  
Foss S, 2011, SPRINGER SER OPER RE, P1, DOI 10.1007/978-1-4419-9473-8
[6]   A uniform asymptotic estimate for discounted aggregate claims with subexponential tails [J].
Hao, Xuemiao ;
Tang, Qihe .
INSURANCE MATHEMATICS & ECONOMICS, 2008, 43 (01) :116-120
[7]  
Hu ZC, 2013, J APPL PROBAB, V50, P309
[8]   SOME CONCEPTS OF DEPENDENCE [J].
LEHMANN, EL .
ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (05) :1137-&
[9]   On the ruin probabilities of a bidimensional perturbed risk model [J].
Li, Junhai ;
Liu, Zaiming ;
Tang, Qihe .
INSURANCE MATHEMATICS & ECONOMICS, 2007, 41 (01) :185-195
[10]  
Liu L., 2007, MATH THEORY APPL, V27, P67