Handwritten Digit Recognition Using SVM Binary Classifiers and Unbalanced Decision Trees

被引:4
作者
Gil, Adriano Mendes [2 ]
Fernandes Costa Filho, Cicero Ferreira [1 ]
Fernandes Costa, Marly Guimaraes [1 ]
机构
[1] Univ Fed Amazonas, Ctr Pesquisa & Desenvolvimento Tecnol Eletron & I, UFAM CETELI, Manaus, Amazonas, Brazil
[2] Inst Nokia Tecnol, Manaus, Amazonas, Brazil
来源
IMAGE ANALYSIS AND RECOGNITION, ICIAR 2014, PT I | 2014年 / 8814卷
关键词
Handwritten digit recognition; MNIST database; Support vector machine; Unbalanced decision tree; Binary classifiers;
D O I
10.1007/978-3-319-11758-4_27
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we use SVM binary classifiers coupled with a binary classifier architecture, an unbalanced decision tree, for handwritten digit recognition. According to input variables, two classifiers were trained and tested. One using digit characteristics and the other using the whole image as input variables. Developed recently, the unbalanced decision tree architecture provides a simple structure for a multiclass classifier using binary classifiers. In this work, using the whole image as input, 100% handwritten digit recognition accuracy was obtained in the MNIST database. These are the best results published in the literature for the MNIST database.
引用
收藏
页码:246 / 255
页数:10
相关论文
共 50 条
  • [21] Moving Object Recognition Based on SVM and Binary Decision Tree
    Fu, Yingjie
    Ma, Dazhong
    Zhang, Huaguang
    Zheng, Li
    2017 6TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS (DDCLS), 2017, : 495 - 500
  • [22] Hand written digit recognition using combination of neural network classifiers
    Khotanzad, A
    Chung, C
    1998 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION, 1998, : 168 - 173
  • [23] Bangla Handwritten Digit Recognition Using Autoencoder and Deep Convolutional Neural Network
    Shopon, Md
    Mohammed, Nabeel
    Abedin, Md Anowarul
    2016 INTERNATIONAL WORKSHOP ON COMPUTATIONAL INTELLIGENCE (IWCI), 2016, : 63 - 67
  • [24] A Novel Approach for Handwritten Digit Recognition Using Multilayer Perceptron Neural Network
    Datsi, Toufik
    Aznag, Khalid
    El Oirrak, Ahmed
    ADVANCED INTELLIGENT SYSTEMS FOR SUSTAINABLE DEVELOPMENT (AI2SD'2020), VOL 2, 2022, 1418 : 233 - 244
  • [25] Understanding Convolutional Neural Networks Using A Minimal Model for Handwritten Digit Recognition
    Teow, Matthew Y. W.
    2017 IEEE 2ND INTERNATIONAL CONFERENCE ON AUTOMATIC CONTROL AND INTELLIGENT SYSTEMS (I2CACIS), 2017, : 167 - 172
  • [26] Persian Handwritten Digit Recognition Using Combination of Convolutional Neural Network and Support Vector Machine Methods
    Parseh, Mohammad
    Rahmanimanesh, Mohammad
    Keshavarzi, Parviz
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2020, 17 (04) : 572 - 578
  • [27] Multi-script handwritten digit recognition using multi-task learning
    Gondere, Mesay Samuel
    Schmidt-Thieme, Lars
    Sharma, Durga Prasad
    Scholz, Randolf
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (01) : 355 - 364
  • [28] Kernel Analysis for Handwritten Digit Recognition Using Support Vector Machine on MNIST Dataset
    Duy, Huynh Anh
    Hung, Phan Duy
    PROCEEDINGS OF SEVENTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, VOL 4, 2023, 465 : 131 - 142
  • [29] Bayanno-Net: Bangla Handwritten Digit Recognition using Convolutional Neural Networks
    Islam, Mohammad Shakirul
    Fovsal, Md. Ferdouse Ahmed
    Noori, Shcak Rasped Haider
    PROCEEDINGS OF 2019 IEEE REGION 10 SYMPOSIUM (TENSYMP), 2019, : 23 - 27
  • [30] Histogram of oriented gradients based off-line handwritten devanagari characters recognition using SVM, K-NN and NN classifiers
    Deore S.P.
    Pravin A.
    Revue d'Intelligence Artificielle, 2019, 33 (06) : 441 - 446