Handwritten Digit Recognition Using SVM Binary Classifiers and Unbalanced Decision Trees

被引:4
|
作者
Gil, Adriano Mendes [2 ]
Fernandes Costa Filho, Cicero Ferreira [1 ]
Fernandes Costa, Marly Guimaraes [1 ]
机构
[1] Univ Fed Amazonas, Ctr Pesquisa & Desenvolvimento Tecnol Eletron & I, UFAM CETELI, Manaus, Amazonas, Brazil
[2] Inst Nokia Tecnol, Manaus, Amazonas, Brazil
来源
IMAGE ANALYSIS AND RECOGNITION, ICIAR 2014, PT I | 2014年 / 8814卷
关键词
Handwritten digit recognition; MNIST database; Support vector machine; Unbalanced decision tree; Binary classifiers;
D O I
10.1007/978-3-319-11758-4_27
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we use SVM binary classifiers coupled with a binary classifier architecture, an unbalanced decision tree, for handwritten digit recognition. According to input variables, two classifiers were trained and tested. One using digit characteristics and the other using the whole image as input variables. Developed recently, the unbalanced decision tree architecture provides a simple structure for a multiclass classifier using binary classifiers. In this work, using the whole image as input, 100% handwritten digit recognition accuracy was obtained in the MNIST database. These are the best results published in the literature for the MNIST database.
引用
收藏
页码:246 / 255
页数:10
相关论文
共 50 条
  • [1] Combining SVM classifiers for handwritten digit recognition
    Gorgevik, D
    Cakmakov, D
    16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL III, PROCEEDINGS, 2002, : 102 - 105
  • [2] Handwritten digit recognition by combining SVM classifiers
    Gorgevik, D
    Cakmakov, D
    EUROCON 2005: THE INTERNATIONAL CONFERENCE ON COMPUTER AS A TOOL, VOL 1 AND 2 , PROCEEDINGS, 2005, : 1393 - 1396
  • [3] Persian handwritten digit recognition using ensemble classifiers
    Karimi, Hossein
    Esfahanimehr, Azadeh
    Mosleh, Mohammad
    Ghadam, Faraz Mohammadian Jadval
    Salehpour, Simintaj
    Medhati, Omid
    INTERNATIONAL CONFERENCE ON ADVANCED WIRELESS INFORMATION AND COMMUNICATION TECHNOLOGIES (AWICT 2015), 2015, 73 : 416 - 425
  • [4] Handwritten digit recognition by combined classifiers
    van Breukelen, M
    Duin, RPW
    Tax, DMJ
    den Hartog, JE
    KYBERNETIKA, 1998, 34 (04) : 381 - 386
  • [5] Handwritten Digit Recognition via Active Belief Decision Trees
    Li Ziyi
    Ma Liyao
    Ke Xiaolu
    Wang Yong
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 7021 - 7025
  • [6] Handwritten Digit Recognition Based on Pooling SVM-Classifiers Using Orientation and Concavity Based Features
    Saavedra, Jose M.
    PROGRESS IN PATTERN RECOGNITION IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2014, 2014, 8827 : 658 - 665
  • [7] High performance classifiers combination for handwritten digit recognition
    Cecotti, H
    Vajda, S
    Belaïd, A
    PATTERN RECOGNITION AND DATA MINING, PT 1, PROCEEDINGS, 2005, 3686 : 619 - 626
  • [8] An Algorithm for Handwritten Digit Recognition Using Projection Histograms and SVM Classifier
    Tuba, Eva
    Bacanin, Nebojsa
    2015 23RD TELECOMMUNICATIONS FORUM TELFOR (TELFOR), 2015, : 464 - 467
  • [9] Handwritten Digit Recognition Based on LS-SVM
    Zhao, Xiaoming
    Zhang, Shiqing
    ADVANCES IN FUTURE COMPUTER AND CONTROL SYSTEMS, VOL 1, 2012, 159 : 483 - +
  • [10] Handwritten digit recognition based on a neural SVM combination
    Nemmour H.
    Chibani Y.
    International Journal of Computers and Applications, 2010, 32 (01) : 104 - 109