EDGE-DISJOINT CLIQUES IN GRAPHS WITH HIGH MINIMUM DEGREE

被引:3
作者
Yuster, Raphael [1 ]
机构
[1] Univ Haifa, Dept Math, IL-31905 Haifa, Israel
关键词
triangles; packing; fractional; DENSE GRAPHS; TRIANGLES; NUMBER; PACKINGS; INTEGER; SIZE;
D O I
10.1137/130933800
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a graph G and a fixed integer k >= 3, let nu(k) (G) denote the maximum number of pairwise edge-disjoint copies of K-k in G. For a constant c, let.(k, c) be the infimum over all constants gamma such that any graph G of order n and minimum degree at least cn has nu(k) (G) >= gamma n(2)(1 -o(n)(1)). By Turan's theorem, eta(k, c) = 0 if c <= 1 -1/(k -1) and by Wilson's theorem, eta(k, c) -> 1/(k(2) - k) as c -> 1. We prove that for any 1 > c > 1-1/(k-1), eta(k, c) >= c/2 - ((k 2)-1)c(k-1)/2 Pi(k-2)(i=1) ((i+1)c-i)+2((k 2)-1c(k-2), while it is conjectured that eta (k, c) = c/(k(2) - k) if c >= k/(k + 1) and eta(k, c) = c/2 -(k - 2)/(2k - 2) if k/(k + 1) > c > 1 - 1/(k - 1). The case k = 3 is of particular interest. In this case the bound states that for any 1 > c > 1/2, eta(3, c) >= c/2 -c(2)/4c-1. By further analyzing the case k = 3 we obtain the improved lower bound eta(3, c) >= (12 c(2)-5 c+2-root 240 c(4)-216 c(3)+73c(2)-20 c+4)(2 c-1)/32(1-c) c. This bound is always at most within a fraction of (20 - root 238)/6 > 0.762 of the conjectured value, which is eta(3, c) = c/6 for c >= 3/4 and eta(3, c) = c/2 - 1/4 if 3/4 > c > 1/2. Our main tool is an analysis of the value of a natural fractional relaxation of the problem.
引用
收藏
页码:893 / 910
页数:18
相关论文
共 50 条
  • [2] Edge-decompositions of graphs with high minimum degree
    Barber, Ben
    Kuehn, Daniela
    Lo, Allan
    Osthus, Deryk
    ADVANCES IN MATHEMATICS, 2016, 288 : 337 - 385
  • [3] Edge-disjoint spanning trees and forests of graphs
    Zhou, Jiang
    Bu, Changjiang
    Lai, Hong-Jian
    DISCRETE APPLIED MATHEMATICS, 2021, 299 : 74 - 81
  • [4] Edge-disjoint Hamilton Cycles in Random Graphs
    Knox, Fiachra
    Kuehn, Daniela
    Osthus, Deryk
    RANDOM STRUCTURES & ALGORITHMS, 2015, 46 (03) : 397 - 445
  • [5] Edge-Disjoint Steiner Trees and Connectors in Graphs
    Li, Hengzhe
    Liu, Huayue
    Liu, Jianbing
    Mao, Yaping
    GRAPHS AND COMBINATORICS, 2023, 39 (02)
  • [6] Packing edge-disjoint cycles in graphs and the cyclomatic number
    Harant, Jochen
    Rautenbach, Dieter
    Recht, Peter
    Regen, Friedrich
    DISCRETE MATHEMATICS, 2010, 310 (09) : 1456 - 1462
  • [7] Edge-disjoint odd cycles in 4-edge-connected graphs
    Kawarabayashi, Ken-ichi
    Kobayashi, Yusuke
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2016, 119 : 12 - 27
  • [8] Extremal Graphs for a Spectral Inequality on Edge-Disjoint Spanning Trees
    Cioaba, Sebastian M.
    Ostuni, Anthony
    Park, Davin
    Potluri, Sriya
    Wakhare, Tanay
    Wong, Wiseley
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (02)
  • [9] EDGE-DISJOINT HOMOTOPIC PATHS IN STRAIGHT-LINE PLANAR GRAPHS
    SCHRIJVER, A
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1991, 4 (01) : 130 - 138
  • [10] Wiring edge-disjoint layouts
    Fak. für Math. und Informatik, Universität Konstanz, D-78457 Konstanz, Germany
    Comput Geom Theory Appl, 4 (255-273):