Hamiltonian approach to lagrangian gauge symmetries

被引:49
作者
Banerjee, R [1 ]
Rothe, HJ [1 ]
Rothe, KD [1 ]
机构
[1] Univ Heidelberg, Inst Theoret Phys, D-69120 Heidelberg, Germany
关键词
D O I
10.1016/S0370-2693(99)00977-6
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We reconsider the problem of finding all local symmetries of a Lagrangian. Out approach is completely Hamiltonian without any reference to the associated action. We show that the restrictions on the gauge parameters entering in the definition of the generator of gauge transformations follow from the commutativity of a general gauge variation with the time derivative operation. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:248 / 251
页数:4
相关论文
共 9 条
[1]   GAUGE-INVARIANCE OF SYSTEMS WITH 1ST-CLASS CONSTRAINTS [J].
CABO, A ;
CHAICHIAN, M ;
MARTINEZ, DL .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (12) :5646-5658
[2]   ON THE NOETHER IDENTITIES FOR A CLASS OF SYSTEMS WITH SINGULAR LAGRANGIANS [J].
CHAICHIAN, M ;
MARTINEZ, DL .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (12) :6536-6545
[3]   DYNAMICS OF GAUGE SYSTEMS AND DIRAC CONJECTURE [J].
COSTA, MEV ;
GIROTTI, HO ;
SIMOES, TJM .
PHYSICAL REVIEW D, 1985, 32 (02) :405-410
[4]   GENERALIZED HAMILTONIAN DYNAMICS [J].
DIRAC, PAM .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1950, 2 (02) :129-148
[5]  
Gitman D. M., 1990, Springer Series in Nuclear and Particle Physics
[6]   EXISTENCE THEOREM FOR GAUGE SYMMETRIES IN HAMILTONIAN CONSTRAINED SYSTEMS [J].
GOMIS, J ;
HENNEAUX, M ;
PONS, JM .
CLASSICAL AND QUANTUM GRAVITY, 1990, 7 (06) :1089-1096
[7]   GAUGE-INVARIANCE AND DEGREE OF FREEDOM COUNT [J].
HENNEAUX, M ;
TEITELBOIM, C ;
ZANELLI, J .
NUCLEAR PHYSICS B, 1990, 332 (01) :169-188
[8]   Gauge symmetry in Lagrangian formulation and Schwinger models [J].
Shirzad, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (11) :2747-2760
[9]  
Sudarshan E. C. G., 1974, CLASSICAL DYNAMICS M