Periodic solutions for the p-Laplacian neutral functional differential system

被引:1
作者
Wang, Zhenyou [1 ]
Song, Changxiu [1 ]
机构
[1] Guangdong Univ Technol, Sch Appl Math, Guangzhou 510006, Guangdong, Peoples R China
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2013年
关键词
p-Laplacian; periodic solutions; coincidence degree; EXISTENCE;
D O I
10.1186/1687-1847-2013-367
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using the generalized Borsuk theorem in coincidence degree theory, we prove the existence of periodic solutions for the p-Laplacian neutral functional differential system.
引用
收藏
页数:8
相关论文
共 50 条
[12]   Periodic solutions for n-dimensional generalized Lienard type p-Laplacian functional differential system [J].
Gao, F. B. ;
Zhang, W. ;
Lai, S. K. ;
Chen, S. P. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) :5906-5914
[13]   On the existence of periodic solutions for a class of p-Laplacian system [J].
Peng, Shiguo ;
Xu, Zhiting .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) :166-174
[14]   Periodic solutions for a Rayleigh system of p-Laplacian type [J].
Peng, Shiguo ;
Zhu, Siming .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (01) :274-279
[15]   Periodic solutions for a Lienard type p-Laplacian differential equation [J].
Meng, Hua ;
Long, Fei .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 224 (02) :696-701
[16]   Existence of periodic solutions for a p-Laplacian neutral functional differential equation with multiple variable parameters [J].
Wang, Zhengxin ;
Lu, Shiping ;
Cao, Jinde .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (02) :734-747
[17]   Periodic Solutions to an Evolution p-Laplacian System [J].
Ying Jie WEIWen Jie GAO Institute of Mathematics .
Journal of Mathematical Research with Applications, 2010, (03) :390-398
[18]   PERIODIC SOLUTIONS FOR p-LAPLACIAN FUNCTIONAL DIFFERENTIAL EQUATIONS WITH TWO DEVIATING ARGUMENTS [J].
Song, Changxiu ;
Gao, Xuejun .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2011,
[19]   Periodic solutions for p-Laplacian neutral differential equation with multiple delay and variable coefficients [J].
Bi, Zhonghua ;
Cheng, Zhibo ;
Yao, Shaowen .
ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
[20]   EXISTENCE OF PERIODIC SOLUTIONS FOR p-LAPLACIAN NEUTRAL FUNCTIONAL EQUATION WITH MULTIPLE DEVIATING ARGUMENTS [J].
Xiang, Tian ;
Yuan, Rong .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2011, 37 (02) :235-258