Electronic Structure-Reactivity Relationship on Ruthenium Step-Edge Sites from Carbonyl 13C Chemical Shift Analysis

被引:10
作者
Foppa, Lucas [1 ]
Yamamoto, Keishi [1 ]
Liao, Wei-Chih [1 ]
Comas-Vives, Aleix [1 ]
Coperet, Christophe [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Chem & Appl Biosci, Vladimir Prelog Weg 1-5, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
NUCLEAR-MAGNETIC-RESONANCE; INITIO MOLECULAR-DYNAMICS; DENSITY-FUNCTIONAL THEORY; X-RAY-STRUCTURE; SHIELDING TENSORS; CO CHEMISORPTION; METATHESIS CATALYSTS; NMR; DISSOCIATION; SURFACE;
D O I
10.1021/acs.jpclett.8b01332
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ru nanoparticles are highly active catalysts for the Fischer-Tropsch and the Haber-Bosch processes. They show various types of surface sites upon CO adsorption according to NMR spectroscopy. Compared to terminal and bridging ill adsorption modes on terraces or edges, little is known about side-on 172 CO species coordinated to B-5 or B-6 step-edges, the proposed active sites for CO and N-2 cleavage. By using solid-state NMR and DFT calculations, we analyze C-13 chemical shift tensors (CSTs) of carbonyl ligands on the molecular cluster model for Ru nanoparticles, Ru-6(eta(2)-mu(4)-CO)(2)(CO)(13)(eta(6)-C6Me6), and show that, contrary to eta(1) carbonyls, the CST principal components parallel to the C-O bond are extremely deshielded in the eta(2) species due to the population of the C-O pi* antibonding orbital, which weakens the bond prior to dissociation. The carbonyl CST is thus an indicator of the reactivity of both Ru clusters and Ru nanoparticles step-edge sites toward C-O bond cleavage.
引用
收藏
页码:3348 / 3353
页数:11
相关论文
共 65 条
[31]   ABINITIO MOLECULAR-DYNAMICS FOR LIQUID-METALS [J].
KRESSE, G ;
HAFNER, J .
PHYSICAL REVIEW B, 1993, 47 (01) :558-561
[32]   Role of Coordination Number, Geometry, and Local Disorder on 27Al NMR Chemical Shifts and Quadrupolar Coupling Constants: Case Study with Aluminosilicates [J].
Lam, Erwin ;
Comas-Vives, Aleix ;
Coperet, Christophe .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (36) :19946-19957
[33]   CO Chemisorption and Dissociation at High Coverages during CO Hydrogenation on Ru Catalysts [J].
Loveless, Brett T. ;
Buda, Corneliu ;
Neurock, Matthew ;
Iglesia, Enrique .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (16) :6107-6121
[34]   Organometallic Ruthenium Nanoparticles: Synthesis, Surface Chemistry, and Insights into Ligand Coordination [J].
Martinez-Prieto, Luis M. ;
Chaudret, Bruno .
ACCOUNTS OF CHEMICAL RESEARCH, 2018, 51 (02) :376-384
[35]   Organometallic Ruthenium Nanoparticles as Model Catalysts for CO Hydrogenation: A Nuclear Magnetic Resonance and AmbientPressure X-ray Photoelectron Spectroscopy Study [J].
Martinez-Prieto, Luis M. ;
Carenco, Sophie ;
Wu, Cheng H. ;
Bonnefille, Eric ;
Axnanda, Stephanus ;
Liu, Zhi ;
Fazzini, Pier F. ;
Philippot, Karine ;
Salmeron, Miquel ;
Chaudret, Bruno .
ACS CATALYSIS, 2014, 4 (09) :3160-3168
[36]  
MOON DW, 1987, SURF SCI, V180, pL123, DOI 10.1016/0039-6028(87)90033-1
[37]   Location and Dynamics of CO Co-ordination on Ru Nanoparticles: A Solid State NMR Study [J].
Novio, Fernando ;
Philippot, Karine ;
Chaudret, Bruno .
CATALYSIS LETTERS, 2010, 140 (1-2) :1-7
[38]  
Perdew JP, 1997, PHYS REV LETT, V78, P1396, DOI 10.1103/PhysRevLett.77.3865
[39]   All-electron magnetic response with pseudopotentials: NMR chemical shifts [J].
Pickard, CJ ;
Mauri, F .
PHYSICAL REVIEW B, 2001, 63 (24)
[40]   Solid-State Chlorine NMR of Group IV Transition Metal Organometallic Complexes [J].
Rossini, Aaron J. ;
Mills, Ryan W. ;
Briscoe, Graham A. ;
Norton, Erin L. ;
Geier, Stephen J. ;
Hung, Ivan ;
Zheng, Shaohui ;
Autschbach, Jochen ;
Schurko, Robert W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (09) :3317-3330