Spherically symmetric solutions in torsion bigravity

被引:11
作者
Damour, Thibault [1 ]
Nikiforova, Vasilisa [1 ]
机构
[1] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France
关键词
POINCARE GAUGE-THEORY; FREE GRAVITY LAGRANGIANS; FUNDAMENTAL PARTICLES; GENERAL-RELATIVITY; R+R2 THEORIES; FIELD; MASS; EQUATIONS; SPIN;
D O I
10.1103/PhysRevD.100.024065
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study spherically symmetric solutions in a four-parameter Einstein-Cartan-type class of theories. These theories include torsion, as well as the metric, as dynamical fields and contain only two physical excitations (around flat spacetime): a massless spin-2 excitation and a massive spin-2 one (of mass m(2) equivalent to kappa). They offer a geometric framework (which we propose to call "torsion bigravity") for a modification of Einstein's theory that has the same spectrum as bimetric gravity models. We find that the spherically symmetric solutions of torsion bigravity theories exhibit several remarkable features: (i) they have the same number of degrees of freedom as their analogs in ghost-free bimetric gravity theories (i.e., one less than in ghostfull bimetric gravity theories); (ii) in the limit of a small mass for the spin-2 field (kappa -> 0), no inverse powers of. arise at the first two orders of perturbation theory (contrary to what happens in bimetric gravity where 1/kappa(2) factors arise at linear order, and 1/kappa(4) ones at quadratic order). We numerically construct a high-compactness (asymptotically flat) star model in torsion bigravity and show that its geometrical and physical properties are significantly different from those of a general relativistic star having the same observable Keplerian mass.
引用
收藏
页数:29
相关论文
共 62 条
[1]  
Abbott BP, 2019, PHYS REV LETT, V123, DOI [10.1103/PhysRevLett.123.011102, 10.1103/PhysRevLett.121.129902]
[2]   Tests of the gravitational inverse-square law [J].
Adelberger, EG ;
Heckel, BR ;
Nelson, AE .
ANNUAL REVIEW OF NUCLEAR AND PARTICLE SCIENCE, 2003, 53 :77-121
[3]   The trivial role of torsion in projective invariant theories of gravity with non-minimally coupled matter fields [J].
Alfonso, Victor I. ;
Bejarano, Cecilia ;
Beltran Jimenez, Jose ;
Olmo, Gonzalo J. ;
Orazi, Emanuele .
CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (23)
[4]  
[Anonymous], ARXIV190304467 LIGO
[5]   Recovery of general relativity in massive gravity via the Vainshtein mechanism [J].
Babichev, E. ;
Deffayet, C. ;
Ziour, R. .
PHYSICAL REVIEW D, 2010, 82 (10)
[6]   The Vainshtein mechanism in the decoupling limit of massive gravity [J].
Babichev, E. ;
Deffayet, C. ;
Ziour, R. .
JOURNAL OF HIGH ENERGY PHYSICS, 2009, (05)
[7]   Born-Infeld inspired modifications of gravity [J].
Beltran Jimenez, Jose ;
Heisenberg, Lavinia ;
Olmo, Gonzalo J. ;
Rubiera-Garcia, Diego .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2018, 727 :1-129
[8]   Testing general relativity with present and future astrophysical observations [J].
Berti, Emanuele ;
Barausse, Enrico ;
Cardoso, Vitor ;
Gualtieri, Leonardo ;
Pani, Paolo ;
Sperhake, Ulrich ;
Stein, Leo C. ;
Wex, Norbert ;
Yagi, Kent ;
Baker, Tessa ;
Burgess, C. P. ;
Coelho, Flavio S. ;
Doneva, Daniela ;
De Felice, Antonio ;
Ferreira, Pedro G. ;
Freire, Paulo C. C. ;
Healy, James ;
Herdeiro, Carlos ;
Horbatsch, Michael ;
Kleihaus, Burkhard ;
Klein, Antoine ;
Kokkotas, Kostas ;
Kunz, Jutta ;
Laguna, Pablo ;
Lang, Ryan N. ;
Li, Tjonnie G. F. ;
Littenberg, Tyson ;
Matas, Andrew ;
Mirshekari, Saeed ;
Okawa, Hirotada ;
Radu, Eugen ;
O'Shaughnessy, Richard ;
Sathyaprakash, Bangalore S. ;
Van den Broeck, Chris ;
Winther, Hans A. ;
Witek, Helvi ;
Aghili, Mir Emad ;
Alsing, Justin ;
Bolen, Brett ;
Bombelli, Luca ;
Caudill, Sarah ;
Chen, Liang ;
Degollado, Juan Carlos ;
Fujita, Ryuichi ;
Gao, Caixia ;
Gerosa, Davide ;
Kamali, Saeed ;
Silva, Hector O. ;
Rosa, Joao G. ;
Sadeghian, Laleh .
CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (24)
[9]   A test of general relativity using radio links with the Cassini spacecraft [J].
Bertotti, B ;
Iess, L ;
Tortora, P .
NATURE, 2003, 425 (6956) :374-376
[10]   CAN GRAVITATION HAVE A FINITE-RANGE [J].
BOULWARE, DG ;
DESER, S .
PHYSICAL REVIEW D, 1972, 6 (12) :3368-3382