Mollification in Strongly Lipschitz Domains with Application to Continuous and Discrete De Rham Complexes

被引:35
作者
Ern, Alexandre [1 ]
Guermond, Jean-Luc [2 ]
机构
[1] Univ Paris Est, CERMICS, ENPC, F-77455 Marne La Vallee 2, France
[2] Texas A&M Univ, Dept Math, 3368 TAMU, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Finite Element Approximation; Mollification; De Rham Diagram; ELEMENT EXTERIOR CALCULUS; MAXWELL EQUATIONS; FINITE; REGULARITY; FLUID;
D O I
10.1515/cmam-2015-0034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct mollification operators in strongly Lipschitz domains that do not invoke non-trivial extensions, are L-p stable for any real number p is an element of [1, infinity], and commute with the differential operators del, del x, and del(.). We also construct mollification operators satisfying boundary conditions and use them to characterize the kernel of traces related to the tangential and normal trace of vector fields. We use the mollification operators to build projection operators onto general H-1-, H(curl)-and H(div)-conforming finite element spaces, with and without homogeneous boundary conditions. These operators commute with the differential operators del, del x, and del-, are L-p-stable, and have optimal approximation properties on smooth functions.
引用
收藏
页码:51 / 75
页数:25
相关论文
共 32 条
[1]  
Amrouche C, 1998, MATH METHOD APPL SCI, V21, P823, DOI 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO
[2]  
2-B
[3]  
[Anonymous], 1985, MONOGR STUD MATH
[4]  
[Anonymous], 2001, ISC0110MATH TEX A M
[5]  
[Anonymous], 2003, Numer. Math. Sci. Comput
[6]  
[Anonymous], 1938, Rec. Math. Moscou, n. Ser.
[7]  
Arnold DN, 2006, ACT NUMERIC, V15, P1, DOI 10.1017/S0962492906210018
[8]   FINITE ELEMENT EXTERIOR CALCULUS FROM HODGE THEORY TO NUMERICAL STABILITY [J].
Arnold, Douglas N. ;
Falk, Richard S. ;
Winther, Ragnar .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 47 (02) :281-354
[9]   L2-THEORY OF THE MAXWELL OPERATOR IN ARBITRARY DOMAINS [J].
BIRMAN, MS ;
SOLOMYAK, MZ .
RUSSIAN MATHEMATICAL SURVEYS, 1987, 42 (06) :75-96
[10]   An up-to-the boundary version of Friedrichs's lemma and applications to the linear Koiter shell model [J].
Blouza, A ;
Le Dret, HE .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (04) :877-895