The Caenorhabditis elegans pvl-5 gene protects hypodermal cells from ced-3-dependent, ced-4-independent cell death

被引:11
作者
Joshi, P [1 ]
Eisenmann, DM [1 ]
机构
[1] Univ Maryland Baltimore Cty, Dept Biol Sci, Baltimore, MD 21250 USA
关键词
D O I
10.1534/genetics.103.020503
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Programmed cell death (PCD) is regulated by multiple evolutionarily conserved mechanisms to ensure by the survival of the cell. Here we describe pvl-5, a gene that likely regulates PCD in Caenorhabditis elegans. In wild-type hermaphrodites at the L2 stage there are 11 Pn.p hypodermal cells in the ventral midline arrayed along the anterior-posterior axis and 6 of these cells become the vulval precursor cells. In pvl-5(ga87) animals there are fewer Pn.p cells (average of 7.0) present at this time. Lineage analysis reveals that the missing Pn.p cells die around the time of the L1 molt in a manner that often resembles the programmed cell deaths that occur normally in C. elegans development. This Pn.p cell death is suppressed by mutations in the caspase gene ced-3 and in the bc1-2 homolog ced-9, Suggesting that the Pn.p cells are dying by PCD in pvl-5 mutants. Surprisingly, the Pn.p cell death is not suppressed by loss of ced-4 function. ced-4 (Apaf-1) is required for all previously known apoptotic cell deaths in C. elegans. This suggests that loss of pvl 5 function leads to the activation of a ced-3-dependent, ced-4-independent form of PCD and that pvl-5 may, normally function to protect Cells from inappropriate activation of the apoptotic pathway.
引用
收藏
页码:673 / 685
页数:13
相关论文
共 67 条
[1]  
Anderson P, 1995, METHOD CELL BIOL, V48, P31
[2]  
BRENNER S, 1974, GENETICS, V77, P71
[3]   Biochemical pathways of caspase activation during apoptosis [J].
Budihardjo, I ;
Oliver, H ;
Lutter, M ;
Luo, X ;
Wang, XD .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1999, 15 :269-290
[4]   Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development [J].
Cecconi, F ;
Alvarez-Bolado, G ;
Meyer, BI ;
Roth, KA ;
Gruss, P .
CELL, 1998, 94 (06) :727-737
[5]   Translocation of C. elegans CED-4 to nuclear membranes during programmed cell death [J].
Chen, FL ;
Hersh, BM ;
Conradt, B ;
Zhou, Z ;
Riemer, D ;
Gruenbaum, Y ;
Horvitz, HR .
SCIENCE, 2000, 287 (5457) :1485-1489
[6]   Interaction of CED-4 with CED-3 and CED-9: A molecular framework for cell death [J].
Chinnaiyan, AM ;
ORourke, K ;
Lane, BR ;
Dixit, VM .
SCIENCE, 1997, 275 (5303) :1122-1126
[7]   A common set of engulfment genes mediates removal of both apoptotic and necrotic cell corpses in C-elegans [J].
Chung, SB ;
Gumienny, TL ;
Hengartner, MO ;
Driscoll, M .
NATURE CELL BIOLOGY, 2000, 2 (12) :931-937
[8]   CONTROL OF CELL FATES IN THE CENTRAL BODY REGION OF C-ELEGANS BY THE HOMEOBOX GENE LIN-39 [J].
CLARK, SG ;
CHISHOLM, AD ;
HORVITZ, HR .
CELL, 1993, 74 (01) :43-55
[9]   The C-elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9 [J].
Conradt, B ;
Horvitz, HR .
CELL, 1998, 93 (04) :519-529
[10]   The TRA-1A sex determination protein of C. elegans regulates sexually dimorphic cell deaths by repressing the egl-1 cell death activator gene [J].
Conradt, B ;
Horvitz, HR .
CELL, 1999, 98 (03) :317-327