Personal clinical history predicts antibiotic resistance of urinary tract infections

被引:131
作者
Yelin, Idan [1 ]
Snitser, Olga [1 ]
Novich, Gal [2 ]
Katz, Rachel [3 ]
Tal, Ofir [4 ]
Parizade, Miriam [5 ]
Chodick, Gabriel [3 ,6 ]
Koren, Gideon [3 ,6 ]
Shalev, Varda [3 ,6 ]
Kishony, Roy [1 ,2 ,4 ]
机构
[1] Technion Israel Inst Technol, Fac Biol, Haifa, Israel
[2] Technion Israel Inst Technol, Dept Comp Sci, Haifa, Israel
[3] Maccabi Healthcare Serv, Maccabitech, Tel Aviv, Israel
[4] Technion Israel Inst Technol, Lorry I Lokey Interdisciplinary Ctr Life Sci & En, Haifa, Israel
[5] Natl Lab, Maccabi Healthcare Serv, Rehovot, Israel
[6] Tel Aviv Univ, Sackler Fac Med, Tel Aviv, Israel
基金
欧洲研究理事会; 美国国家卫生研究院;
关键词
TRIMETHOPRIM-SULFAMETHOXAZOLE RESISTANCE; ACUTE UNCOMPLICATED CYSTITIS; RISK-FACTORS; ANTIMICROBIAL SUSCEPTIBILITY; EPIDEMIOLOGY; PREVALENCE; PATHOGENS; THERAPY; CARE; MICROBIOLOGY;
D O I
10.1038/s41591-019-0503-6
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Antibiotic resistance is prevalent among the bacterial pathogens causing urinary tract infections. However, antimicrobial treatment is often prescribed 'empirically', in the absence of antibiotic susceptibility testing, risking mismatched and therefore ineffective treatment. Here, linking a 10-year longitudinal data set of over 700,000 community-acquired urinary tract infections with over 5,000,000 individually resolved records of antibiotic purchases, we identify strong associations of antibiotic resistance with the demographics, records of past urine cultures and history of drug purchases of the patients. When combined together, these associations allow for machine-learning-based personalized drug-specific predictions of antibiotic resistance, thereby enabling drug-prescribing algorithms that match an antibiotic treatment recommendation to the expected resistance of each sample. Applying these algorithms retrospectively, over a 1-year test period, we find that they greatly reduce the risk of mismatched treatment compared with the current standard of care. The clinical application of such algorithms may help improve the effectiveness of antimicrobial treatments.
引用
收藏
页码:1143 / +
页数:21
相关论文
共 53 条
  • [1] Risk factors for ciprofloxacin resistance among Escherichia coli strains isolated from community-acquired urinary tract infections in Turkey
    Arslan, H
    Azap, ÖK
    Ergönül, Ö
    Timurkaynak, F
    [J]. JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2005, 56 (05) : 914 - 918
  • [2] UROPATHOGENS OF VARIOUS CHILDHOOD POPULATIONS AND THEIR ANTIBIOTIC SUSCEPTIBILITY
    ASHKENAZI, S
    EVENTOV, S
    SAMRA, Z
    DINARI, G
    [J]. PEDIATRIC INFECTIOUS DISEASE JOURNAL, 1991, 10 (10) : 742 - 746
  • [3] Big Data and Machine Learning in Health Care
    Beam, Andrew L.
    Kohane, Isaac S.
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2018, 319 (13): : 1317 - 1318
  • [4] Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis
    Bradley, Phelim
    Gordon, N. Claire
    Walker, Timothy M.
    Dunn, Laura
    Heys, Simon
    Huang, Bill
    Earle, Sarah
    Pankhurst, Louise J.
    Anson, Luke
    de Cesare, Mariateresa
    Piazza, Paolo
    Votintseva, Antonina A.
    Golubchik, Tanya
    Wilson, Daniel J.
    Wyllie, David H.
    Diel, Roland
    Niemann, Stefan
    Feuerriegel, Silke
    Kohl, Thomas A.
    Ismail, Nazir
    Omar, Shaheed V.
    Smith, E. Grace
    Buck, David
    McVean, Gil
    Walker, A. Sarah
    Peto, Tim E. A.
    Crook, Derrick W.
    Iqbal, Zamin
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [5] A European study on the relationship between antimicrobial use and antimicrobial resistance
    Bronzwaer, SLAM
    Cars, O
    Buchholz, U
    Mölstad, S
    Goettsch, W
    Veldhuijzen, IK
    Kool, JL
    Sprenger, MJW
    Degener, JE
    [J]. EMERGING INFECTIOUS DISEASES, 2002, 8 (03) : 278 - 282
  • [6] Prevalence and predictors of trimethoprim-sulfamethoxazole resistance among uropathogenic Escherichia coli isolates in Michigan
    Brown, PD
    Freeman, A
    Foxman, B
    [J]. CLINICAL INFECTIOUS DISEASES, 2002, 34 (08) : 1061 - 1066
  • [7] Conventional and molecular epidemiology of trimethoprim-sulfamethoxazole resistance among urinary Escherichia coli isolates
    Burman, WJ
    Breese, PE
    Murray, BE
    Singh, KV
    Batal, HA
    MacKenzie, TD
    Ogle, JW
    Wilson, ML
    Reves, RR
    Mehler, PS
    [J]. AMERICAN JOURNAL OF MEDICINE, 2003, 115 (05) : 358 - 364
  • [8] Risk factors for trimethoprim-sulfamethoxazole resistance in patients with acute uncomplicated cystitis
    Colgan, Richard
    Johnson, James R.
    Kuskowski, Michael
    Gupta, Kalpana
    [J]. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2008, 52 (03) : 846 - 851
  • [9] Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: systematic review and meta-analysis
    Costelloe, Ceire
    Metcalfe, Chris
    Lovering, Andrew
    Mant, David
    Hay, Alastair D.
    [J]. BMJ-BRITISH MEDICAL JOURNAL, 2010, 340 : 1120
  • [10] Transforming clinical microbiology with bacterial genome sequencing
    Didelot, Xavier
    Bowden, Rory
    Wilson, Daniel J.
    Peto, Tim E. A.
    Crook, Derrick W.
    [J]. NATURE REVIEWS GENETICS, 2012, 13 (09) : 601 - 612