Goodness-of-fit test for density estimation

被引:2
作者
Kim, C [1 ]
Hong, C [1 ]
Jeong, M [1 ]
Yang, M [1 ]
机构
[1] PUSAN NATL UNIV, DEPT STAT, PUSAN 609735, SOUTH KOREA
关键词
bandwidth; Kernel estimation; Martingale; mean integrated error;
D O I
10.1080/03610929708832074
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is often necessary to test whether X-1,...,X-n are from a certain density f(x) or not. Most test statistics such as the Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling statistics are based on the empirical distribution function (F) over cap(x). In this paper we suggest a test statistic based on the integrated squared error of the kernel density estimator. We derive the asymptotic distribution of the statistic under the null and alternative hypothesis. Some simulation results for power comparisons are also given.
引用
收藏
页码:2725 / 2741
页数:17
相关论文
共 9 条
[1]   SOME GLOBAL MEASURES OF DEVIATIONS OF DENSITY-FUNCTION ESTIMATES [J].
BICKEL, PJ ;
ROSENBLA.M .
ANNALS OF STATISTICS, 1973, 1 (06) :1071-1095
[2]   ASYMPTOTIC COMPARISON OF CRAMER-VONMISES AND NONPARAMETRIC FUNCTION ESTIMATION TECHNIQUES FOR TESTING GOODNESS-OF-FIT [J].
EUBANK, RL ;
LARICCIA, VN .
ANNALS OF STATISTICS, 1992, 20 (04) :2071-2086
[3]   TESTING THE GOODNESS OF FIT OF A LINEAR-MODEL VIA NONPARAMETRIC REGRESSION TECHNIQUES [J].
EUBANK, RL ;
SPIEGELMAN, CH .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (410) :387-392
[6]   COMPARING NONPARAMETRIC VERSUS PARAMETRIC REGRESSION FITS [J].
HARDLE, W ;
MAMMEN, E .
ANNALS OF STATISTICS, 1993, 21 (04) :1926-1947
[7]  
HOLST L, 1980, SANKHYA A, V42, P19
[8]   QUADRATIC MEASURE OF DEVIATION OF 2-DIMENSIONAL DENSITY ESTIMATES AND A TEST OF INDEPENDENCE [J].
ROSENBLATT, M .
ANNALS OF STATISTICS, 1975, 3 (01) :1-14
[9]  
Silverman BW, 2018, Density estimation for statistics and data analysis, DOI [10.2307/2347507, DOI 10.2307/2347507, 10.1201/9781315140919]